首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For 18 two-wave interovulatory intervals in heifers, the follicular waves were first detected on Days -0.2 +/- 0.1 and 9.6 +/- 0.2, and for 4 three-wave intervals on Days -0.5 +/- 0.3, 9.0 +/- 0.0 and 16.0 +/- 1.1 (ovulation is Day 0). The day-to-day mean diameter profile of the dominant follicle of the 1st wave and the day of emergence of the 2nd wave were not significantly different between 2-wave and 3-wave intervals. There were no indications, therefore, that events occurring during the first half of the interovulatory interval were associated with the later emergence of a 3rd wave. The dominant ovulatory follicle differed significantly (P less than 0.05 at least) between 2-wave and 3-wave intervals in day of emergence (Day 9.6 +/- 0.2 and 16.0 +/- 1.1), length of interval from emergence of follicle to ovulation (10.9 +/- 0.4 and 6.8 +/- 0.6 days), and diameter on day before ovulation (16.5 +/- 0.4 and 13.9 +/- 0.4 mm). The mean length of 2-wave interovulatory intervals (20.4 +/- 0.3 days) was shorter (P less than 0.01) than for 3-wave intervals (22.8 +/- 0.6 days). The mean day of luteal regression for 2-wave and 3-wave intervals was 16.5 +/- 0.4 and 19.2 +/- 0.5 (P less than 0.01). For all intervals, luteal regression occurred after emergence of the ovulatory wave, and the next wave did not emerge until near the day of ovulation at the onset of the subsequent interovulatory interval. In conclusion, the emergence of a 3rd wave was associated with a longer luteal phase, and the viable dominant follicle present at the time of luteolysis became the ovulatory follicle.  相似文献   

2.
Nulliparous Holstein heifers were examined ultrasonically once daily during an interovulatory interval (ovulation = Day 0). Follicles with a diameter >/=4 mm were sequentially identified. Heifers were randomized into four groups (n = 4 heifers per group): untreated control heifers and those treated on Days 0 to 3, Days 3 to 6, or Days 6 to 11. Heifers designated for treatment were given an intravenous injection, twice daily, of a proteinaceous fraction of follicular fluid (PFFF; 16 ml) prepared by extracting bovine follicular fluid with activated charcoal. Mean cessation of growth of the dominant follicle of Wave 1 was later (P<0.005) in control heifers (Day 5.5) than in heifers treated on Days 0 to 3 (Day 1.5) or Days 3 to 6 (Day 3.5). Mean onset of regression of the dominant follicle of Wave 1 was later (P<0.005) in control heifers (Day 12.0) than in heifers treated on Days 0 to 3 (Day 5.0) or Days 3 to 6 (Day 7.5). Mean cessation of growth of the largest subordinate follicle of Wave 1 was later (P<0.05) in control heifers (Day 3.0) than in heifers treated on Days 0 to 3 (Day 1.2). Mean onset of regression of the largest subordinate follicle of Wave 1 was later (P<0.05) in control heifers (Day 7.0) than in heifers treated on Days 0 to 3 (Day 4.8). In heifers treated on Days 6 to 11, cessation of growth and onset of regression of the dominant follicle (means, Days 5.2 and 12.0, respectively) were not significantly different from those of the controls. The hypothesis that PFFF treatment on Days 0 to 3 would cause suppression of all follicles of Wave 1 was supported. The hypothesis that PFFF treatment on Days 3 to 6 would not alter growth of the dominant follicle of Wave 1 was not supported. The mean day of detection of the dominant follicle of Wave 2 was different (P<0.005) in control heifers (Day 8.5) than in heifers treated on Day 0 to 3 (Day 5.5) or Days 6 to 11 (Day 14.2). The mean length of the interovulatory interval was shorter (P<0.05) in control heifers (20.5 d) than in heifers treated on Days 6 to 11 (23.2 d). The hypothesis that PFFF treatment on Days 6 to 11 would delay the emergence of Wave 2 was supported. The proportion of heifers with 2-wave interovulatory intervals was 3 4 for control heifers and 0 4 , 1 4 , and 4 4 for heifers treated on Days 0 to 3, Days 3 to 6, and Days 6 to 11, respectively (3 4 vs 0 4 , P<0.05); the remaining heifers had 3-wave interovulatory intervals. On average, in PFFF-treated heifers, follicles stopped growing 1 d after treatment was started, and Wave 2 was detected 3 d after treatment was stopped.  相似文献   

3.
Transrectal ultrasound examinations were used in nulliparous Holstein heifers to study the association between time of spontaneous embryonic death (cessation of heartbeat) and luteal regression, and to determine the fate of the conceptus after embryonic death. There was no significant difference between nonbred heifers (n = 135) and bred, nonpregnant heifers (embryonic heartbeat never detected, n = 40) for day of onset of luteal regression (means, 17.6 and 17.9, respectively) or for length of interovulatory interval (means, 20.6 and 20.9 days, respectively). Pregnancy was confirmed by detection of an embryonic heartbeat on Day 24 (ovulation = Day 0) or later, or on two consecutive days prior to Day 24; on average, an embryonic heartbeat was detected on Day 22.0 (n = 104). Pregnancy rate on Day 24 was higher (P<0.02) in heifers bred on Day -1 (116/149, 77.8%) than in heifers bred on Day -2 (51/79, 64.6%), and was higher (P<0.05) in heifers with an embryo transferred ipsilateral to the corpus luteum than in heifers with an embryo transferred contralateral to the corpus luteum (3/4 vs 0/5). Embryonic death (lack of embryonic heartbeat following confirmation of pregnancy) and presumptive embryonic death (embryonic heartbeat detected on one day only, prior to Day 24) were detected prior to Day 25 in one and two bred heifers, respectively, and in one and two heifers with an embryo transferred contralateral to the corpus luteum, respectively. In these six heifers, luteal regression preceded, and apparently caused, embryonic death. In seven of eight heifers in which embryonic death was detected between Days 25 and 40, the onset of luteal regression was detected at least 3 d (range, 3 to 42 d) after detection of embryonic death. The incidence of embryonic death on Days 29 to 32 was lower (P<0.02) in heifers bred on Day -1 than in heifers bred on Day -2 (0 of 96 vs 3 of 40, respectively). In heifers in which luteal regression preceded embryonic death, the conceptus was lost rapidly, with minimal evidence of degeneration. In heifers in which embryonic death preceded luteal regression, there was ultrasonic evidence of conceptus degeneration, but conceptus fluid and tissue appeared to be maintained. In all heifers with embryonic death, the conceptus and its breakdown products apparently were eliminated by expulsion through the cervix rather than by resorption.  相似文献   

4.
Follicular dynamics during the ovulatory season in goats   总被引:1,自引:0,他引:1  
Ginther OJ  Kot K 《Theriogenology》1994,42(6):987-1001
Growth and regression of ovarian follicles>or=3 mm were studied by transrectal ultrasonography for 4 interovulatory intervals in each of 5 Saanen goats. The observed number of growing identified 4-mm follicles per day differed (P<0.05) from randomness, indicating that follicles, on the average, emerged in groups (waves). Averaged over all interovulatory intervals, the number of 3-mm follicles on each day that later reached >or=6 mm followed a pattern of significant peaks on Days 0 (ovulation), 4,8 and 14. A follicular wave was defined by consecutive days of entry of follicles>or=6 mm into the wave, and the day of emergence was defined as the first day that the >or=6 mm follicles were 3 mm. In 15 of 20 (75%) interovulatory intervals, 1 wave emerged during each of Day -2 to Day 1 (Wave 1); Days 2 to 5 (Wave 2); Days 6 to 9 (Wave 3); and Days 10 to 15 (Wave 4). Ovulation occurred during Wave 4. The mean days of emergence of Waves 1 to 4 were Days -1, 4, 8 and 13, respectively. However, in 5 of these 15 interovulatory intervals, 50% of the apparent waves merged or were continuous so that a distinction could not be made between 2 waves. The largest follicle grew to a larger (P<0.05) maximum diameter for Waves 1 (8.7+/-0.3 mm) and 4 (9.7+/-0.3 mm) than for Waves 2 (7.2+/-0.2 mm) and 3 (7.3+/-0.2 mm). The following observations suggested that the phenomenon of follicular dominance was more common during Waves 1 and 4 than during Waves 2 and 3: 1) the interwave intervals (days) were longer (P<0.05) for Waves 1 (3.4+/-0.2) and 4 (4.3+/-0.6) than for Waves 2 and 3 (2.5+/-0.2 for each wave) and 2) the correlation between maximum diameter of largest follicle and the subsequent interwave interval was significant for Waves 1 and 4 but not for Waves 2 and 3. The 5 remaining interovulatory intervals were irregular and involved more than 4 waves, including 2 interovulatory intervals with prolonged follicular phases (14 and 21) and failures of ovulation. In conclusion, the predominant follicular-wave pattern was 4 waves with ovulation from Wave 4, and apparent follicular dominance was expressed during some follicular waves, especially during Waves 1 and 4.  相似文献   

5.
Quantitative echotexture analysis of bovine corpora lutea   总被引:5,自引:0,他引:5  
Tom JW  Pierson RA  Adams GP 《Theriogenology》1998,49(7):1345-1352
A study was designed to evaluate the attributes of ultrasound images of bovine ovarian CL throughout the estrous cycle. The ovaries of 8 heifers were examined daily by transrectal ultrasonography for 2 interovulatory intervals (ovulation = Day 0). Ultrasonographic examinations of the ovaries were videotaped daily, and recorded images of the CL were digitized for computer analysis of echotexture (mean pixel value and heterogeneity). Blood samples were taken daily and to determine plasma progesterone concentrations. Corpora lutea were of 2 morphological types, those with a central fluid-filled cavity (n = 6) and those without (n = 9). No differences were detected between CL with or without a fluid-filled cavity; therefore, data were combined. Mean pixel values of ultrasound images of the CL changed (P = 0.0001) during the interovulatory interval; values decreased (P < 0.05) from Day 0 to Day 3 during early growth of the CL, reached a plateau when increases in luteal diameter ceased, and decreased (P < 0.05) to minimal levels at the onset of regression of the CL. The mean pixel value subsequently increased (P < 0.05) after Day 17 to values similar to those at the beginning of the interovulatory interval. A time-dependent effect was not observed for heterogeneity of images of the CL (P > 0.5). The results supported the hypothesis that quantitative changes in luteal echotexture are reflective of changes in the physiologic status of the CL.  相似文献   

6.
The effects of ablation of a dominant follicle and treatment with follicular fluid on circulating concentrations of follicle-stimulating hormone (FSH) were studied and the temporal relationships between surges of FSH and follicular waves were studied in heifers with two or three follicular waves/interovulatory interval. Cauterization of the dominant follicle on Day 3 or Day 5 (ovulation on Day 0) (six control and six treated heifers/day) resulted in a surge (P less than 0.05) in FSH beginning the day after cautery. The FSH surge prior to wave 2 (first post-treatment follicular wave) occurred 4 days (Day 3 cautery) and 2 days (Day 5 cautery) before the surge in control groups, corresponding to a 4-day and a 2-day advance in emergence of wave 2 compared with controls. It was concluded that the dominant follicle on Day 3 and Day 5 was associated with the suppression of circulating FSH concentrations. Heifers (n = 4/group) were untreated or treated intravenously with a proteinaceous fraction of bovine follicular fluid on Days 0-3, 3-6, or 6-11. Concentrations of FSH were suppressed (P less than 0.05) for the duration of treatment, regardless of the days of treatment. Cessation of treatment was followed within 1 day by the start of a surge in FSH. The FSH surge prior to wave 2 occurred 2 days earlier (treatment on Days 0-3), 1 day later (treatment on Days 3-6), and 6 days later (treatment on Days 6-11) than in controls, corresponding to an equivalent advance or delay, respectively, in the emergence of wave 2 compared with controls. The results suggest that the effects of exogenous follicular fluid on follicular development were mediated, in whole or in part, by altering plasma FSH concentrations. Control heifers combined for the two experiments were separated into those with 2-wave (n = 11) or 3-wave (n = 5) interovulatory intervals. Two-wave heifers had two FSH surges and 3-wave heifers had three apparent FSH surges during the interovulatory interval. Results of the cautery and follicular fluid experiments indicated that a surge in FSH necessarily preceded the emergence of a wave. The FSH surges in treated and control heifers began 2-4 days before the detectable (ultrasound) emergence of a follicular wave (follicles of 4 and 5 mm), peaked 1 or 2 days before emergence and began to decrease approximately when the follicles of a wave begin to diverge into a dominant follicle and subordinate follicles (follicles 6-7 mm).  相似文献   

7.
Two hypotheses were tested: (1) a dominant follicle causes regression of its subordinate follicles, and (2) a dominant follicle during its growing phase suppresses the emergence of the next wave. Cyclic heifers were randomly assigned to one of four groups (6 heifers/group): cauterization of the dominant follicle of Wave 1 or sham surgery (control) on Day 3 or Day 5 (day of ovulation = Day 0). Ultrasonic monitoring of individually identified follicles was done once daily throughout the interovulatory interval. The onset of regression (decreasing diameter) of the largest subordinate follicle of Wave 1 was delayed (P less than 0.01) by cauterization of the dominant follicle of Wave 1 on Day 3 compared to controls (mean onset of regression, Days 10.8 +/- 2.1 vs 4.3 +/- 0.4). Cauterization of the dominant follicle of Wave 1 on Days 3 or 5 caused early emergence (P less than 0.01) of Wave 2 when compared to controls (Day-3 groups: Days 5.5 +/- 0.4 vs 9.6 +/- 0.7; Day-5 groups: Days 7.0 +/- 0.3 vs 9.1 +/- 0.4). The results supported the two hypotheses. In addition, cauterization of the dominant follicle of Wave 1 on Days 3 or 5 increased the incidence of 3-wave interovulatory intervals.  相似文献   

8.
Uterine tone, uterine contractility and endometrial echotexture were monitored daily in heifers during the estrous cycle (n = 6; Days 0 to 21; ovulation = Day 0) and during early pregnancy (n = 7; Days 0 to 26). Uterine tone was assessed by transrectal palpation and scored from 1 (flaccid) to 5 (turgid) by an operator who had no knowledge of reproductive status, day, or group. The main effect of day was significant, but the group effect and the group-by-day interaction were not. Uterine tone scores were high during the periovulatory period (Days--1, 0, 1), decreased (P < 0.05) to low levels on Days 3 and 4, and then increased (P < 0.05) from Days 4 to 10. The increase in tone during early diestrus was confirmed (P < 0.05) in a second experiment. Uterine contractility was assessed by transrectal ultrasonography during a five-minute scan of the caudal portions of the uterine horns and scored from 1 (minimal contractility) to 4 (maximal contractility). The main effects of day and the group-by-day interaction were significant. Contractility scores in both groups were highest just before or on the day of ovulation (Days--1,0) and then decreased (P < 0.05) until Day 11. After Day 16, the scores increased (P < 0.05) in the nonbred heifers and remained low in the pregnant heifers. Endometrial echotexture scores were different among days (P < 0.0001), between the 2 groups (P < 0.02), and for the group-by-day interaction (P < 0.0001). Echotexture scores in both groups peaked just before ovulation (Day--1) and then decreased (P < 0.05) until Day 4. After Day 16, the scores increased in the nonbred group but remained low in pregnant heifers. In summary, uterine contractility and endometrial scores had similar profiles, being high during the periovulatory period and low thereafter; the levels rose in association with the end of the interovulatory interval in nonbred heifers, but remained at low levels in pregnant heifers. Uterine tone scores were also high during the periovulatory period and decreased to low levels several days postovulation, but then, in contrast with the other end points, began to increase in both the nonbred and pregnant heifers.  相似文献   

9.
Two experiments were conducted to study the in vitro effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2), and luteinizing hormone (LH) on oxytocin (OT) release from bovine luteal tissue. Luteal concentration of OT at different stages of the estrous cycle was also determined. In Experiment 1, sixteen beef heifers were assigned randomly in equal numbers (N = 4) to be killed on Days 4, 8, 12, and 16 of the estrous cycle (Day 0 = day of estrus). Corpora lutea were collected, an aliquot of each was removed for determination of initial OT concentration, and the remainder was sliced and incubated with vehicle (control) or with PGF2 alpha (10 ng/ml), PGE2 (10 ng/ml), or LH (5 ng/ml). Luteal tissue from heifers on Day 4 was sufficient only for determination of initial OT levels. Luteal OT concentrations (ng/g) increased from 414 +/- 84 on Day 4 to 2019 +/- 330 on Day 8 and then declined to 589 +/- 101 on Day 12 and 81 +/- 5 on Day 16. Prostaglandin F2 alpha induced a significant in vitro release of luteal OT (ng.g-1.2h-1) on Day 8 (2257 +/- 167 vs. control 1702 +/- 126) but not on Days 12 or 16 of the cycle. Prostaglandin E2 and LH did not affect OT release at any stage of the cycle studied. In Experiment 2, six heifers were used to investigate the in vitro dose-response relationship of 10, 20, and 40 ng PGF2 alpha/ml of medium on OT release from Day 8 luteal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The characteristics of follicle evacuation during ovulation and the development of the corpus luteum until day 5 (day 0 = ovulation) were studied in seven nulliparous Holstein heifers using real-time ultrasonography. Ovulation was induced and synchronized with a single injection of PGF2 alpha followed in 36 h by GnRH. Continuous scanning and videotaping was performed from apparent stigma formation until antral fluid was no longer detected. The beginning of follicular evacuation (second 0) was defined, retrospectively, after the antral area decreased 10% or more in 1 s. The completion of evacuation was defined as the inability to detect the antrum (the beginning of luteal development, 0 h). Corpora lutea development was monitored at 0, 4 and 20 h, and every 24 h thereafter until day 5. Changes in the maximal cross-sectional area of the antrum, luteal tissue, and central luteal cavities and in the pixel intensity of luteal tissue were determined using a computerized image program. The initial antral fluid evacuation occurred in two patterns that could be readily separated: (1) rapid, means of 58 and 89% evacuation in 1 and 4 s, respectively (four heifers); and (2) slow, means of 17 and 35% in 1 and 4 s, respectively (three heifers). The initial loss that distinguished the two patterns involved about 4 and 20 s for rapid and slow evacuation, respectively. Thereafter, the loss patterns were similar for the two types. The time from the beginning to the completion of evacuation ranged from 6 s to 14.5 min. Mean luteal tissue area increased (P < 0.05) between completion of evacuation (91.2 +/- 6.5 mm2) and day 3 (164.4 +/- 13.7 mm2) and between day 3 and day 4 (263.4 +/- 26.6 mm2). The growth rate of the luteal tissue area between day 3 and day 4 (103.2 +/- 16.0 mm2 day-1) was greater (P < 0.05) than that between day 2 and day 3 (41.9 +/- 12.4 mm2 day-1) and between day 4 and day 5 (49.7 +/- 22.0 mm2 day-1). In contrast to increasing luteal tissue area, mean pixel intensity decreased (P < 0.05) progressively between the completion of evacuation (78.4 +/- 6.3) and day 2 (60.4 +/- 2.5) and did not change significantly thereafter. In conclusion, initial follicular fluid loss during ovulation occurred in two patterns, involving about 4 and 20 s, respectively. The most intensive luteal tissue growth occurred between day 3 and day 4, and the echogenicity of the luteal tissue decreased between day 0 and day 2.  相似文献   

11.
Ovarian follicles ⩾ 2 mm were studied in 22 Holstein heifers by daily ultrasound examinations. There were significant differences (P < 0.0001) among days of the estrous cycle for diameter of the largest and second largest follicles and in the numbers of follicles 2–3 mm, 4–6 mm, 7–10 mm, 11–13 mm, > 13 mm, and total number of follicles ⩾2 mm. Patterns of the mean profiles for all follicular endpoints except the number of follicles 4–6 mm and total number of follicles ⩾ 2 mm were bimodal. The days encompassed by the first and second portions, respectively, of the bimodal profiles were approximately: diameter of largest follicle, Days 0–14 and 15–21 (ovulation); diameter of second largest follicle, Days 0–7 and 8–20; number of follicles 2–3 mm, Days 1–11 and 12–20; number of follicles 7–10 mm, Days 0–6 and 7–18; number of follicles 11–13 mm, Days 0–8 and 9–20; and number of follicles > 13 mm, Days 2–14 and 16–21. Data for the various categories were recombined to demonstrate relationships between the numbers of follicles 2–3 mm and ⩾ 4 mm during the interovulatory interval. There were significant differences (P < 0.0001) among days in both 2–3 mm and ⩾ 4 mm follicular categories. Differences appeared due to periods of higher mean numbers of follicles 2–3 mm which began between Days 2 or 3 and Days 15 or 16 and reached maximum levels on Day 7 and Day 19, respectively. There was an inverse relationship between the number of follicles 2–3 mm vs ⩾ 4 mm and between the diameters of largest and second largest follicles. The process of selection of the follicle destined to ovulate appeared to become manifest as selective growth of the preovulatory follicle with concurrent decrease in diameter of the second largest follicle and regression of the other follicles in the various follicular categories. A similar process apparently occurred early in the interovulatory interval. There was apparently selective growth of a follicle to preovulatory size by Day 6, coincident decrease in diameter of the second largest follicle, and apparent regression of other follicles in the ultrasonically detectable pool. The only apparent difference was that the follicle which attained preovulatory diameter early in the interovulatory interval remained in the ovary for 5 or 6 days, then regressed, while the follicle which attained preovulatory diameter at approximately Day 18–20 ovulated.  相似文献   

12.
The interrelationships of progesterone, estradiol, and LH were studied in mares (n=9), beginning at the first ovulation (Day 0) of an interovulatory interval. An increase in mean progesterone concentrations began on Day 0 and reached maximum on Day 6, with luteolysis beginning on Day 14. A common progesterone threshold concentration of about 2 ng/ml for a negative effect on LH occurred at the beginning and end of the luteal phase. Progesterone and LH concentrations decreased at a similar rate from Day 6 until the onset of luteolysis on Day 14, consistent with a decreasing positive effect of LH on progesterone. Concentrations of LH during the increase in the ovulatory surge consisted of two linear regression segments involving a rate of 0.4 ng/ml/day for Days 14-22 and 1.8 ng/ml/day for Day 22 to 1 day after the second ovulation. The end of the first segment and beginning of the second segment was 2 days before ovulation and was the day the ovulatory estradiol surge was at a peak.  相似文献   

13.
The objective of this study was to assess the reliability of luteal blood flow (LBF) as recorded by color Doppler sonography to monitor luteal function during the estrous cycle of dairy cows and to compare the results with that for the established criterion luteal size (LS) as determined by B-mode sonography. In total, 14 consecutive sonographic examinations were carried out in 10 synchronized lactating Holstein-Friesian cows (Bos taurus) on Days 4, 5, 6, 7, 8, 10, 12, 14, 16, -5, -4, -3, -2, -1 of the estrous cycle (Day 1 = ovulation). Plasma progesterone concentrations in venous blood (P4) were quantified by enzyme immunoassay. Luteal size was determined by sonographic measurement of the maximal cross-sectional area of the corpus luteum (CL). Luteal blood supply was estimated by calculating the maximum colored area of the CL from power Doppler sonographic images. Luteal size doubled during the luteal growth phase (until Day 7) and remained at this level during the luteal static phase (Day 8 to 16) before decreasing rather slowly during luteal regression (Days -5 to -1). Luteal blood flow doubled during the growth phase, doubled furthermore during the static phase, and decreased rapidly during luteal regression. Thus, LBF values represented highly reliable predictors of luteal status. Luteal blood flow predicted reliably a P4 > 1.0 ng/mL by reaching only 35% of the maximal values, whereas LS had to exceed 60% of the maximal values to indicate reliably a functional CL. It is concluded that LBF reflected luteal function better than LS specifically during luteal regression.  相似文献   

14.
Two operators independently conducted ultrasonic pregnancy examinations on nulliparous Holstein heifers on Days 10, 12, 14, 16, 18, 20 and 22, and assigned a diagnosis (pregnant or nonpregnant) and a score for degree of certainty in the diagnosis (1, 2 or 3 for low, intermediate or high, respectively). Pregnancy was retrospectively confirmed by the ultrasonographic detection of an embryo proper and embryonic heartbeat on Day 24 in 20 25 bred heifers; the five nonpregnant heifers were excluded from the analyses. Eleven nonbred heifers were included as an unequivocal source of nonpregnant heifers. Accuracy was not significantly greater than a guess (50%) before Day 18, but reached 100% on Days 20 and 22. Mean accuracy was higher (P<0.005) for nonpregnant (65 77 , 84%) than pregnant heifers (91.5 140 , 65%). For certainty score, there were main effects of day (P<0.0001), reproductive status (pregnant or nonpregnant, P<0.003), and an interaction of day and reproductive status (P<0.0001). The certainty score increased in all heifers among days and was higher (P<0.05) in pregnant than nonpregnant heifers on Days 16 to 20. For luteal area (area of corpus luteum, excluding area of fluid filled center, if present), there were significant main effects of day, reproductive status and a day by status interaction (P<0.0001 for each). Luteal area was approximately constant in pregnant heifers, but in nonpregnant heifers it was lower (P<0.05) on Days 16 to 22 than on Days 10 to 14. Uterine echotexture was scored on a scale of 1 to 3, characteristic of a diestrus, intermediate and estrus uterus, respectively. There were main effects of day and reproductive status (P<0.0001 for each) and an interaction of day and reproductive status (P<0.025). Uterine echotexture was approximately constant in pregnant heifers, but in nonpregnant heifers it was higher (P<0.05) on Days 16 to 22 than on Days 10 to 14. Pregnancy diagnosis on Days 10 to 14 was based on detection of the conceptus; however, detection of the conceptus was not accurate prior to visualization of the embryo proper (mean Day 22, range Days 20 to 24). In nonpregnant heifers, a correct diagnosis with high certainty was made when a small corpus luteum and uterine echotexture characteristic of estrus were detected. In the absence of these changes on Days 18 to 22, a diagnosis of pregnancy was made with high accuracy and intermediate or high certainty.  相似文献   

15.
In order to induce suprabasal plasma concentrations of progesterone after luteolysis and to determine their effect on oestrous behaviour and ovulation, heifers subcutaneously received silicone implants containing 2.5 (n = 4), 5 (n = 4), 6 (n = 3), 7.5 (n = 3) or 10 (n = 4) g of progesterone, or an empty implant (controls, n = 5) between days 8 and 25 of the cycle (ovulation designated Day 0). Growth of dominant follicles and time of ovulation were determined by ultrasound, and signs of oestrus were recorded and scored. Blood was collected at 2–4 h intervals from Days 15 to 27 and assayed for progesterone concentration. In all heifers, plasma concentrations of progesterone sharply decreased during Days 16–18. Control heifers had their lowest progesterone levels on Days 20.5 and 21, standing oestrus on Day 19.5 ± 0.4 (mean ± SEM), and ovulated on Day 20.7 ± 0.4. A similar pattern was observed in heifers treated with 2.5 and 5 g progesterone. Heifers treated with 6, 7.5 and 10 g of progesterone showed an extended (P < 0.05) interovulatory interval. Onset of prooestrus and time of maximum expression of signs of oestrus were not significantly different from those in controls. However, there was an absence of standing oestrus in most of the cases, signs of oestrus lasted longer (P < 0.05) and were weaker in intensity when doses increased. In these groups, the lowest progesterone concentrations were attained shortly after implant removal. Some heifers treated with 6 and 7.5 g of progesterone had standing oestrus and post oestrous bleeding as seen in the controls but ovulation occurred from Days 24.5 to 27. When plasma progesterone concentrations were over 1 nmol 1−1, disturbed oestrus and delayed ovulation occurred. The extended period of prooestrus and oestrus and delayed ovulation were similar to that described in cases of repeat breeding. It is suggested that suprabasal plasma concentrations of progesterone, after luteolysis, may lead to asynchrony between onset of oestrus and ovulation and consequently be a cause of repeat breeding in cattle.  相似文献   

16.
Folliculogenesis was studied daily in 16 interovulatory intervals in 5 Polypay ewes from mid February through April using transrectal ultrasonic imaging. The 3-mm follicles attaining > or = 5 mm on Days--1 (ovulation=Day 0) to 11 showed significant peak numbers on Days 0, 5 and 10. The number of 3- and 4-mm follicles that did not reach > 4 mm was not significant, indicating that these follicles did not manifest a wave pattern. A follicular wave was defined as one or more follicles growing to > or = 5 mm; the day the follicles were 3 mm was the day of wave emergence, and the first wave after ovulation was Wave 1. Waves 1, 2 and 3 emerged on Days -1 to 2,4 to 7 and 8 to 10, respectively. Four interovulatory intervals in April were short (9 to 14 d), indicating the end of the ovulatory season. In the remaining 12 intervals, the ovulatory wave was Wave 3 in one interval, Wave 4 in 8 intervals, and Wave 5 or 6 in 3 intervals. The ovulatory wave followed the rhythmic pattern of Waves 1 to 3 by emerging on Days 11 to 14 in 50% of the intervals. In the remaining intervals, either the ovulatory wave was Wave 4 but did not emerge until Day 16 or other waves intervened between Wave 3 and the ovulatory wave. The longest intervals (22, 24 and 24 d) had >4 waves. Based on a cycle-detection program, peak values of FSH fluctuations were temporally associated with the emergence of waves as indicated by the following: 1) tendency (P < 0.08) for an increase in FSH concentrations between 3 and 2 days before emergence of a wave; 2) close agreement between mean number of waves per interval (mean +/- SEM, 4.1 +/- 0.3) and mean number of identified FSH fluctuations (4.5 +/- 0.3); 3) close agreement in length of interwave intervals (4.0 +/- 0.3) and interpeak (FSH) intervals (3.6 +/- 0.2); 4) positive correlation (r(2)=0.8) for number of the 2 events (follicular waves and FSH fluctuations) within intervals; and 5) a closer (P < 0.01) temporal relationship between the 2 events than would have been expected if the events were independent. The results support a relationship between transient increases in FSH concentrations and emergence of follicular waves throughout the interovulatory interval in Polypay ewes, with the 2 events occurring approximately every 4 d.  相似文献   

17.
Ovarian follicles >/=2mm were studied in 14 pregnant and 14 nonpregnant Holstein heifers by daily ultrasound examinations. There were significant differences among days, from Day 0 (day of ovulation) to Day 21, in the diameter of the largest follicle and the diameter of the second largest follicle in pregnant and nonpregnant heifers. There was an interaction of day and reproductive status (P < 0.001) for the diameter of the largest follicle. Significant differences among days were also observed in the numbers of follicles 2 to 3 mm, 4 to 6 mm, 7 to 10 mm, 11 to 13 mm, and >13 mm, and the total number of follicles >/=2 mm. There was a significant main effect of reproductive status for the number of follicles 11 to 13 mm. An interaction of day and reproductive status was observed for the number of follicles >13 mm, but not for any of the other diameter categories. The effect of reproductive status for number of follicles 11 to 13 mm and the interactions for the number of follicles >13 mm and the diameter of the largest follicle seemed due to the selective growth and ovulation of the follicle destined to ovulate in nonpregnant heifers. The differences in ovarian follicular populations between pregnant and nonpregnant heifers were attributed solely to the presence of a physiological mechanism for the selection of an ovulatory follicle in nonpregnant heifers. There were no significant differences among days for any follicular endpoint during Days 22 to 60 in the pregnant heifers.  相似文献   

18.
Two trials were conducted to examine the effects of estrus synchronization scheme, gonadotropin injection protocol and presence of a large ovarian follicle on response to superstimulation of follicular development and the ensuing superovulation. Estrus was synchronized with either a progestin compound (MGA) or by the use of a luteolytic agent (PGF). Superstimulation was induced with 280 mg equivalents of pFSH administered either by a single subcutaneous injection or by a series of 8 intramuscular injections over 4 d. Follicular development was followed for 5 d with real-time ultrasound, and the heifers were retrospectively classified as to the presence or absence of a large follicle (> or = 8 mm; morphologically dominant follicle) at the start of superstimulation. The 2 trials differed by season of the year and genetic origin of the heifers. In Trial I (20 heifers), the ovulation rate was influenced by the 3-way interaction of the synchronization scheme, injection protocol and morphologically dominant follicle (P = 0.05). The number of large follicles on Day 5 (Day 0 = day of start of superstimulation) and ovarian score (scale 1 to 5 based on extent of follicular development; 1 = least, 5 = most) on Day 5 were significantly correlated (P < 0.05) with ovulation rate. In Trial II (20 heifers), the ovulation rate, number of embryos recovered, number of transferable embryos and ovarian weights were all greater (P < 0.05 to P < 0.01) with the 8-injection protocol than the 1-injection protocol. The number of medium follicles (5 to 7 mm) on Days 2 and 3, number of large follicles (> or = 8 mm) on Days 3, 4 and 5 and ovarian scores on Days 4 and 5 were all significantly correlated (P < 0.05) with ovulation rate. In both trials, differences in follicle populations were not seen until Day 3 of the superstimulation procedure. Collectively, these trials do not provide strong support for a single injection of FSH, as used here, nor does it indicate a clear advantage for either MGA or PGF as a means of enhancing the ovulation rate or embryo quality.  相似文献   

19.
Circulating concentrations of LH and FSH in each of 12 mares were measured in daily blood samples from 3 d before until 3 d after an interovulatory interval (ovulation=Day 0). The interval was normalized to its mean length (22 d) and partitioned into periods relative to high and low (first significant increase and decrease: Days 3 and 14, respectively) mean FSH concentrations. The resulting experimental periods were as follows: 1) Days −3 to 2 corresponding to the periovulatory period, 2) Days 3 to 14 corresponding to the luteal period, and 3) Days −7 to 3 corresponding to the follicular-periovulatory period. An adaptive threshold method was used to detect peak concentrations of LH and FSH fluctuations. There was no significant difference in the number of detected LH fluctuations per mare among the 3 periods (means, 1.2, 1.8, 1.6 fluctuations, respectively). However, more (P<0.05) FSH fluctuations per mare were detected during the luteal period (mean, 2.4 fluctuations) than during the periovulatory period (mean, 0.5 fluctuations) and follicular-periovulatory period (mean, 1.2 fluctuations). Synchronous LH and FSH fluctuations, defined as the simultaneous detection of peak concentrations of fluctuations, occurred more (P<0.05) often per mare during the luteal period (mean, 1.3 fluctuations) than during the periovulatory period (mean, 0.1 fluctuations) and follicular-periovulatory period (mean, 0.2 fluctuations). During the luteal period, concentrations of LH peaked (P<0.05) during FSH fluctuations and, conversely, concentrations of FSH peaked (P<0.05) during LH fluctuations, indicating a high degree of coupling between the 2 gonadotropins. In summary, fluctuations of LH and FSH occurred in synchrony with a high degree of coupling between them during the luteal period, but not during the periovulatory and follicular-periovulatory periods.  相似文献   

20.
Twenty-five normally cyclic Holstein heifers were used to examine the effects of oxytocin on cloprostenol-induced luteolysis, subsequent ovulation, and early luteal and follicular development. The heifers were randomly assigned to 1 of 4 treatments: Group SC-SC (n=6), Group SC-OT (n=6), Group OT-SC (n=6) and Group OT-OT (n=7). The SC-SC and SC-OT groups received continuous saline infusion, while Groups OT-SC and OT-OT received continuous oxytocin infusion (1:9 mg/d) on Days 14 to 26 after estrus. All animals received 500 microg, i.m. cloprostenol 2 d after initiation of infusion (Day 16) to induce luteolysis. Groups SC-OT and OT-OT received oxytocin twice daily (12 h apart) (0.33 USP units/kg body weight, s.c.) on Days 3 to 6 of the estrous cycle following cloprostenol-induced luteolysis, while Groups SC-SC and OT-SC received an equivalent volume of saline. Daily plasma progesterone (P4) concentrations prior to cloprostenol-induced luteolysis and rates of decline in P4 following the induced luteolysis did not differ between oxytocin-infused (OT-OT and OT-SC) and saline-infused (SC-SC and SC-OT) groups (P >0.1). Duration of the estrous cycle was shortened in saline-infused heifers receiving oxytocin daily during the first week of the estrous cycle. In contrast, oxytocin injections did not result in premature inhibition of luteal function and return to estrus in heifers that received oxytocin infusion (OT-OT). Day of ovulation, size of ovulating follicle and time of peak LH after cloprostenol administration for oxytocin and saline-treated control heifers did not differ (P >0.1). During the first 3 d of the estrous cycle following luteal regression, fewer (P <0.01) follicles of all classes were observed in the oxytocin-infused animals. Day of emergence of the first follicular wave in heifers treated with oxytocin was delayed (P <0.05). The results show that continuous infusion of oxytocin during the mid-luteal stage of the estrous cycle has no effect on cloprostenol-induced luteal regression, timing of preovulatory LH peak or ovulation. Further, the finding support that an episodic rather than continuous administration of oxytocin during the first week of the estrous cycle results in premature loss of luteal function. The data suggest minor inhibitory effects of oxytocin on follicular growth during the first 3 d of the estrous cycle following cloprostenol-induced luteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号