共查询到20条相似文献,搜索用时 0 毫秒
1.
Lorenc A Bryk J Golik P Kupryjańczyk J Ostrowski J Pronicki M Semczuk A Szołkowska M Bartnik E 《Mitochondrion》2003,3(2):119-124
We have analyzed mtDNA variation in various cancer samples, comparing them with normal tissue controls, and identified mutations and polymorphisms, both known and novel, in mitochondrial tRNA, rRNA and protein genes. Most remarkably, in a colon cancer sample we have found the A3243G mutation in the homoplasmic state. This mutation is known to cause severe mitochondrial dysfunction and, until now, has not been found in cancer cells, nor in the homoplasmic state in living subjects. The mutation was absent from normal tissue, suggesting that mtDNA mutation and resulting respiratory deficiency played a role in carcinogenesis. 相似文献
2.
Distinct nuclear gene expression profiles in cells with mtDNA depletion and homoplasmic A3243G mutation 总被引:2,自引:0,他引:2
Jahangir Tafrechi RS Svensson PJ Janssen GM Szuhai K Maassen JA Raap AK 《Mutation research》2005,578(1-2):43-52
The pathobiochemical pathways determining the wide variability in phenotypic expression of mitochondrial DNA (mtDNA) mutations are not well understood. Most pathogenic mtDNA mutations induce a general defect in mitochondrial respiration and thereby ATP synthesis. Yet phenotypic expression of the different mtDNA mutations shows large variations that are difficult to reconcile with ATP depletion as sole pathogenic factor, implying that additional mechanisms contribute to the phenotype. Here, we use DNA microarrays to identify changes in nuclear gene expression resulting from the presence of the A3243G diabetogenic mutation and from a depletion of mtDNA (rho0 cells). We find that cells respond mildly to these mitochondrial states with both general and specific changes in nuclear gene expression. This observation indicates that cells can sense the status of mtDNA. A number of genes show divergence in expression in rho0 cells compared to cells with the A3243G mutation, such as genes involved in oxidative phosphorylation. As a common response in A3243G and rho0 cells, mRNA levels for extracellular matrix genes are up-regulated, while the mRNA levels of genes involved in ubiquitin-mediated protein degradation and in ribosomal protein synthesis is down-regulated. This reduced expression is reflected at the level of cytosolic protein synthesis in both A3243G and rho0 cells. Our finding that mitochondrial dysfunction caused by different mutations affects nuclear gene expression in partially distinct ways suggests that multiple pathways link mitochondrial function to nuclear gene expression and contribute to the development of the different phenotypes in mitochondrial disease. 相似文献
3.
Rahman S Poulton J Marchington D Suomalainen A 《American journal of human genetics》2001,68(1):238-240
It is widely held that changes in the distribution of mutant mtDNAs underlie the progressive nature of mtDNA diseases, but there are few data documenting such changes. We compared the levels of 3243 A-->G mutant mtDNA in blood at birth from Guthrie cards and at the time of diagnosis in a blood DNA sample from patients with mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome. Paired blood DNA samples separated by 9-19 years were obtained from six patients with MELAS. Quantification of mutant load, by means of a solid-phase minisequencing technique, demonstrated a decline (range 12%-29%) in the proportion of mutant mtDNA in all cases (P=.0015, paired t-test). These results suggest that mutant mtDNA is slowly selected from rapidly dividing blood cells in MELAS. 相似文献
4.
Yinan Ma Fang Fang Yanling Yang Liping Zou Ying Zhang Songtao Wang Yufeng Xu Pei Pei Yu Qi 《Mitochondrion》2009,9(2):139-143
Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes syndrome (MELAS) is the most frequent syndromic manifestation of A3243G mutation in mitochondrial DNA. Detection of A3243G mutation in blood is less helpful for the diagnosis of MELAS and the carriers, and the mutation ratio in blood correlates only in a limited extent with the severity of the disease. Here we compared the ratio of A3243G mutation in four easily available samples (blood, urine, hair follicle and saliva) in patients with MELAS carrying A3243G mutation as well as their maternal relatives from 32 families, to find out the samples appropriate for the detection of the patients and carriers and useful for the evaluation of clinical severity from their mutation ratio. In MELAS patients and the carriers with minor symptoms or normal phenotype, A3243G mutation ratio was significantly higher in urine than in blood. A close correlation between A3243G mutation ratio in blood and that in urine, hair follicles and saliva was found in the probands and their relatives. Clinical features closely correlated with the mutation ratio in urine. Measurement of A3243G mutation ratio in urine is a non-invasive, convenient and rapid method with its diagnostic meaning superior to blood testing. 相似文献
5.
Kirsi Majamaa-Voltti Keijo Peuhkurinen Marja-Leena Kortelainen Ilmo E Hassinen Kari Majamaa 《BMC cardiovascular disorders》2002,2(1):12-7
Background
Tissues that depend on aerobic energy metabolism suffer most in diseases caused by mutations in mitochondrial DNA (mtDNA). Cardiac abnormalities have been described in many cases, but their frequency and clinical spectrum among patients with mtDNA mutations is unknown.Methods
Thirty-nine patients with the 3243A>G mtDNA mutation were examined, methods used included clinical evaluation, electrocardiogram, Holter recording and echocardiography. Autopsy reports on 17 deceased subjects were also reviewed. The degree of 3243A>G mutation heteroplasmy was determined using an Apa I restriction fragment analysis. Better hearing level (BEHL0.5–4 kHz) was used as a measure of the clinical severity of disease.Results
Left ventricular hypertrophy (LVH) was diagnosed in 19 patients (56%) by echocardiography and in six controls (15%) giving an odds ratio of 7.5 (95% confidence interval; 1.74–67). The dimensions of the left ventricle suggested a concentric hypertrophy. Left ventricular systolic or diastolic dysfunction was observed in 11 patients. Holter recording revealed frequent ventricular extrasystoles (>10/h) in five patients. Patients with LVH differed significantly from those without LVH in BEHL0.5–4 kHz, whereas the contribution of age or the degree of the mutant heteroplasmy in skeletal muscle to the risk of LVH was less remarkable.Conclusions
Structural and functional abnormalities of the heart were common in patients with 3243A>G. The risk of LVH was related to the clinical severity of the phenotype, and to a lesser degree to age, suggesting that patients presenting with any symptoms from the mutation should also be evaluated for cardiac abnormalities. 相似文献6.
Selection against pathogenic mtDNA mutations in a stem cell population leads to the loss of the 3243A-->G mutation in blood
下载免费PDF全文

The mutation 3243A-->G is the most common heteroplasmic pathogenic mitochondrial DNA (mtDNA) mutation in humans, but it is not understood why the proportion of this mutation decreases in blood during life. Changing levels of mtDNA heteroplasmy are fundamentally related to the pathophysiology of the mitochondrial disease and correlate with clinical progression. To understand this process, we simulated the segregation of mtDNA in hematopoietic stem cells and leukocyte precursors. Our observations show that the percentage of mutant mtDNA in blood decreases exponentially over time. This is consistent with the existence of a selective process acting at the stem cell level and explains why the level of mutant mtDNA in blood is almost invariably lower than in nondividing (postmitotic) tissues such as skeletal muscle. By using this approach, we derived a formula from human data to correct for the change in heteroplasmy over time. A comparison of age-corrected blood heteroplasmy levels with skeletal muscle, an embryologically distinct postmitotic tissue, provides independent confirmation of the model. These findings indicate that selection against pathogenic mtDNA mutations occurs in a stem cell population. 相似文献
7.
Mitochondrial DNA background has been shown to be involved in the penetrance of Leber’s hereditary optic neuropathy (LHON) in western Eurasian populations. To analyze mtDNA haplogroup distribution pattern in Han Chinese patients with LHON and G11778A mutation, we analyzed the mtDNA haplogroups of 41 probands with LHON known to harbor G11778A mutation by sequencing the mtDNA control region hypervariable segments and some coding region polymorphisms. Each mtDNA was classified according to the available East Asian haplogroup system. The haplogroup distribution pattern of LHON sample was then compared to the reported Han Chinese samples. Haplogroups M7, D, B, and A were detected in 11 (26.8%), 10 (24.4%), 8 (19.5%), and 5 (12.2%) LHON families, respectively, and accounted for 82.9% of the total samples examined. For the remaining seven mtDNAs, six belonged to M8a, M10a, C, N9a, F1a, and R11, respectively, and one could only be assigned into macro-haplogroup M. The LHON sample was distinguished from other Han Chinese samples in the principal component map based on haplogroup distribution frequency. Our results show that matrilineal genetic components of Chinese LHON patients with G11778A are diverse and differ from related Han Chinese regional samples. mtDNA background might affect the expression of LHON and the G11778A mutation in Chinese population. 相似文献
8.
9.
Torroni A Campos Y Rengo C Sellitto D Achilli A Magri C Semino O García A Jara P Arenas J Scozzari R 《American journal of human genetics》2003,72(4):1005-1012
Thirty-five mitochondrial (mt) DNAs from Spain that harbor the mutation A3243G in association with either MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes) syndrome or a wide array of disease phenotypes (ranging from diabetes and deafness to a mixture of chronic progressive external ophthalmoplegic symptoms and strokelike episodes) were studied by use of high-resolution restriction fragment length polymorphism analysis and control-region sequencing. A total of 34 different haplotypes were found, indicating that all instances of the A3243G mutation are probably due to independent mutational events. Haplotypes were distributed into 13 haplogroups whose frequencies were close to those of the general Spanish population. Moreover, there was no statistically significant difference in haplogroup distribution between patients with MELAS and those with disease phenotypes other than MELAS. Overall, these data indicate that the A3243G mutation harbors all the evolutionary features expected from a severely deleterious mtDNA mutation under strong negative selection, and they reveal that European mtDNA backgrounds do not play a substantial role in modulating the mutation's phenotypic expression. 相似文献
10.
MELAS is a common mitochondrial disease frequently associated with the m.3243A>G point mutation in the tRNALeu(UUR) of mitochondrial DNA and characterized by stroke-like episodes with vasogenic edema and lactic acidosis. The pathogenic mechanism of stroke and brain edema is not known. Alterations in the blood brain barrier (BBB) caused by respiratory chain defects in the cortical microvessels could explain the pathogenesis. To test this hypothesis we developed a tissue culture model of the human BBB. The MELAS mutation was introduced into immortalized brain capillary endothelial cells and astrocytes. Respiratory chain activity and transendothelial electrical resistance, TEER was measured. Severe defects of respiratory chain complex I and IV activities, and a moderate deficiency of complex II activity in cells harboring the MELAS mutation were associated with low TEER, indicating that the integrity of the BBB was compromised. These data support our hypothesis that respiratory chain defects in the components of the BBB cause changes in permeability. 相似文献
11.
The A3243G mutation in the human mitochondrial tRNALeu(UUR) gene causes a number of human diseases. This mutation reduces the level and fraction of aminoacylated tRNALeu(UUR) and eliminates nucleotide modification at the wobble position of the anticodon. These deficiencies are associated with mitochondrial translation defects that result in decreased levels of mitochondrial translation products and respiratory chain enzyme activities. We have suppressed the respiratory chain defects in A3243G mutant cells by overexpressing human mitochondrial leucyl-tRNA synthetase. The rates of oxygen consumption in suppressed cells were directly proportional to the levels of leucyl-tRNA synthetase. Fifteenfold higher levels of leucyl-tRNA synthetase resulted in wild-type respiratory chain function. The suppressed cells had increased steady-state levels of tRNALeu(UUR) and up to threefold higher steady-state levels of mitochondrial translation products, but did not have rates of protein synthesis above those in parental mutant cells. These data suggest that suppression of the A3243G mutation occurred by increasing protein stability. This suppression of a tRNA gene mutation by increasing the steady-state levels of its cognate aminoacyl-tRNA synthetase is a model for potential therapies for human pathogenic tRNA mutations. 相似文献
12.
Maassen JA Biberoglu S 't Hart LM Bakker E de Knijff P 《Archives of physiology and biochemistry》2002,110(3):186-188
A female individual with symptoms of the Maternally Inherited Diabetes and Deafness syndrome (MIDD) was diagnosed positive for the A3243G mutation in her mitochondrial DNA. Heteroplasmy levels were 18% in DNA from leucocytes and 55% in oral mucosa DNA. This finding corroborates the diagnosis of MIDD. Normally, this mutation is present in all the individuals within the maternal lineage of the pedigree. In this particular pedigree the mutation was undetectable in the mother of the proband and her three brothers. Paternity testing using polymorphic chromosomal DNA markers supported the assumed family relationship. We conclude that we are dealing in this proband with the de novo appearance of the A3243G mutation that has reached high heteroplasmy values in at least two tissues within one generation. This observation supports the hypothesis that during embryogenesis mitochondrial DNA goes through a genetic bottleneck with a limited number of segregating units. 相似文献
13.
14.
Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. 总被引:5,自引:1,他引:5
下载免费PDF全文

K Majamaa J S Moilanen S Uimonen A M Remes P I Salmela M Krpp K A Majamaa-Voltti H Rusanen M Sorri K J Peuhkurinen I E Hassinen 《American journal of human genetics》1998,63(2):447-454
Mitochondrial diseases are characterized by considerable clinical variability and are most often caused by mutations in mtDNA. Because of the phenotypic variability, epidemiological studies of the frequency of these disorders have been difficult to perform. We studied the prevalence of the mtDNA mutation at nucleotide 3243 in an adult population of 245,201 individuals. This mutation is the most common molecular etiology of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes), one of the clinical entities among the mitochondrial disorders. Patients with diabetes mellitus, sensorineural hearing impairment, epilepsy, occipital brain infarct, ophthalmoplegia, cerebral white-matter disease, basal-ganglia calcifications, hypertrophic cardiomyopathy, or ataxia were ascertained on the basis of defined clinical criteria and family-history data. A total of 615 patients were identified, and 480 samples were examined for the mutation. The mutation was found in 11 pedigrees, and its frequency was calculated to be >=16. 3/100,000 in the adult population (95% confidence interval 11.3-21. 4/100,000). The mutation had arisen in the population at least nine times, as determined by mtDNA haplotyping. Clinical evaluation of the probands revealed a syndrome that most frequently consisted of hearing impairment, cognitive decline, and short stature. The high prevalence of the common MELAS mutation in the adult population suggests that mitochondrial disorders constitute one of the largest diagnostic categories of neurogenetic diseases. 相似文献
15.
C. A. Remme A. O. Verkerk A. A. M. Wilde M. W. Veldkamp J. M. T. de Bakker C. R. Bezzina 《Netherlands heart journal》2007,15(6):235-238
Lethal ventricular arrhythmias are increasingly considered an important cause of sudden death in relatively young individuals. A genetic predisposition has been recognised in many cases, and research in the last decade has focused on underlying inherited mutations in cardiac ion channels. 相似文献
16.
Liu Y Gao L Xue Q Li Z Wang L Chen R Liu M Wen Y Guan M Li Y Wang S 《Biochemical and biophysical research communications》2011,(1):364-369
In this study, we investigated the effects of the voltage-dependent anion channel (VDAC) on the mitochondrial calcium cycle in cell lines carrying the mitochondrial DNA A4263G mutation. We established lymphoblastoid cell lines from three symptomatic individuals and one asymptomatic individual from the large Chinese Han family carrying the A4263G mutation; these were compared with three control cell lines. The mitochondrial Ca2+ concentration and membrane potential were detected by loading cells with Rhod-2 and JC-1, respectively. Confocal imagines showed the average Rhod-2 and JC-1 fluorescence levels of individuals carrying the tRNAIle A4263G mutation were lower than those of the control group (P < 0.05). The baseline Rhod-2 fluorescence in the control group increased after exposure to atractyloside (an opener of the adenine nucleotide translocator, P < 0.05), but no significant change was detected in the cell line harboring the A4263G mutation (P > 0.05). The baseline JC-1 fluorescence in both the mutated and control cell lines decreased after subsequent exposure to atractyloside (P < 0.05), whereas this effect of atractyloside was inhibited by Cyclosporin A (CsA, a VDAC blocker). We conclude that the mitochondrial VDAC is involved in both the increase of mitochondrial permeability to Ca2+ and the decrease of mitochondrial membrane potential in cell lines carrying the mtDNA A4263G mutation. 相似文献
17.
Lu J Wang D Li R Li W Ji J Zhao J Ye W Yang L Qian Y Zhu Y Guan MX 《Biochemical and biophysical research communications》2006,348(1):115-119
We report here the characterization of a four-generation Han Chinese family with maternally transmitted diabetes mellitus. Six (two males/four females) of eight matrilineal relatives in this family exhibited diabetes. The age of onset in diabetes varies from 15 years to 33 years, with an average of 26 years. Two of affected matrilineal relatives also exhibited hearing impairment. Molecular analysis of mitochondrial DNA (mtDNA) showed the presence of heteroplasmic tRNA(Lue(UUR)) A3243G mutation, ranging from 35% to 58% of mutations in blood cells of matrilineal relatives. The levels of heteroplasmic A3243G mutation seem to be correlated with the severity and age-at-onset of diabetes in this family. Sequence analysis of the complete mitochondrial genome in this pedigree revealed the presence of the A3243G mutation and 38 other variants belonging to the Eastern Asian haplogroup M7C. However, none of other mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence. Thus, the A3243G mutation is the sole pathogenic mtDNA mutation associated with diabetes in this Chinese family. 相似文献
18.
Bravo O Ballana E Estivill X 《Biochemical and biophysical research communications》2006,344(2):511-516
The A1555G mutation in the mitochondrial small ribosomal RNA gene (12S rRNA) has been associated with aminoglycoside-induced, nonsyndromic hearing loss. However, the clinical phenotype of A1555G carriers is extremely variable. In the present study, we have performed an audiological evaluation of a group of deaf patients and hearing carriers of mutation A1555G with the aim to assess the prevalence of the mutation and determine the associated cochlear alterations. Fifty-four patients affected of nonsyndromic hearing loss were screened for the presence of the A1555G mitochondrial mutation. Nine of the familial cases (21%) carried the A1555G mutation, whereas the mutation was not found in any of the sporadic cases. The positive cases and some of their family members underwent a clinical study consisting in a clinical evaluation and audiological testing. The phenotype of A1555G patients varied in age of onset and severity of hearing loss, ranging from profound deafness to completely normal hearing. The audiometric alterations showed bilateral hearing loss, being more severe at high frequencies. Otoacoustic emissions were absent in deaf A1555G carriers, and auditory brainstem response indicated a prolonged Wave I, suggesting a cochlear dysfunction without any effect of the auditory nerve. Moreover, all hearing carriers of A1555G also presented alterations in cochlear physiology. In conclusion, the A1555G mitochondrial mutation causes a cochlear form of deafness, characterized by a more severe loss of hearing at high frequencies. Although the expression of the mutation is variable, cochlear alterations are present in all carriers of mutation A1555G. 相似文献
19.
The MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) is most commonly caused by the 3243A-->G mutation in mitochondrial DNA, resulting in impaired mitochondrial protein synthesis and decreased activities of the respiratory chain complexes. These defects may cause a reduced capacity for ATP synthesis and an increased rate of production of reactive oxygen species. Myoblasts cultured from controls and patients carrying the 3243A-->G mutation were used to measure ATP, ADP, catalase and superoxide dismutase, which was also measured from blood samples. ATP and ADP concentrations were decreased in myoblasts with the 3243A-->G mutation, but the ATP/ADP ratio remained constant, suggesting a decrease in the adenylate pool. The superoxide dismutase and catalase activities were higher than in control cells, and superoxide dismutase activity was slightly, but not significantly higher in the blood of patients with the mutation than in controls. We conclude that impairment of mitochondrial ATP production in myoblasts carrying the 3243A-->G mutation results in adenylate catabolism, causing a decrease in the total adenylate pool. The increase in superoxide dismutase and catalase activities could be an adaptive response to increased production of reactive oxygen species due to dysfunction of the mitochondrial respiratory chain. 相似文献
20.
Tang X Yang L Zhu Y Liao Z Wang J Qian Y Tao Z Hu L Wu G Lan J Wang X Ji J Wu J Ji Y Feng J Chen J Li Z Zhang X Lu J Guan MX 《Gene》2007,393(1-2):11-19
Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic and molecular characterizations of seven Han Chinese pedigrees with aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the variable phenotype of hearing impairment including severity, age-at-onset and audiometric configuration in these subjects. The penetrance of hearing loss in these pedigrees ranged from 3% to 29%, with an average of 13.6%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees varied from 0% to 17%, with an average of 5.3%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA A1555G mutation, in addition to distinct sets of mtDNA polymorphism belonging to East Asian haplogroups B4, D4, D5 and F1, respectively. This suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. Despite the presence of several evolutionary conservative variants in protein-encoding genes, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these seven Chinese families. These suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the A1555G mutation in those Chinese families with very low penetrance of hearing loss. However, aminoglycosides appear to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families. 相似文献