首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The fru4 allele of the sex determination gene fruitless is induced by insertion of a P[lacZ,ry+] enhancer trap element. This insert also acts to disrupt expression of the fru P1 promoter derived male-specific proteins, consequently impairing male courtship behavior. fru4 maps less than 2 kb upstream of the fru P3 promoter, whose function is essential for viability. We replaced this insert with a GAL4 element, P[GAL4,w+], recovering two lines with insertions in opposite orientations at the locus, one of which demonstrated fru-specific mutant phenotypes. Reporter expression of these lines recapitulated that of P3- and P4-derived proteins which, when correlated with a developmental and tissue specific survey of fru promoters' activities, uncovered a previously unsuspected complexity of fru regulation. These novel fru alleles provide the tools for manipulation of fru-expressing cells, allowing the consequent effects to be related back to specific fru functions and the regulatory units controlling these activities.  相似文献   

4.
Lateral root development occurs throughout the life of the plant and is responsible for the plasticity of the root system. In Arabidopsis thaliana, lateral root founder cells originate from pericycle cells adjacent to xylem poles. In order to study the mechanisms of lateral root development, a population of Arabidopsis GAL4-GFP enhancer trap lines were screened and two lines were isolated with GAL4 expression in root xylem-pole pericycle cells (J0121), i.e. in cells competent to become lateral root founder cells, and in young lateral root primordia (J0192). These two enhancer trap lines are very useful tools with which to study the molecular and cellular bases of lateral root development using targeted gene expression. These lines were used for genetic ablation experiments by targeting the expression of a toxin-encoding gene. Moreover, the molecular bases of the enhancer trap expression pattern were characterized. These results suggest that the lateral-root-specific GAL4 expression pattern in J0192 is due to a strong enhancer in the promoter of the LOB-domain protein gene LBD16.  相似文献   

5.
Summary Embryos of 171 Drosophila lines carrying a P-lacZ insertion on the second or third chromosome were analyzed regarding their pattern of lacZ expression. All lines were selected from a larger screen of about 4000 lines (Bier et al. 1989). Tissue specificity and time of onset of lacZ expression was documented for each line. Thereby, a comprehensive list of markers for the various tissue and cell types of the Drosophila embryo could be assembled. With the help of several P-lacZ lines the development of a number of structures was studied which so far had been described only insufficiently or not at all. In particular, the embryonic origin and early development of the oenocytes, imaginal discs, histoblasts, fat body, dorsal vessel, and perineurial cells was analyzed. Several previously unknown cell types associated with the dorsal vessel, trachea, and epidermis were discovered. By combining data regarding the origin of the different mesodermally derived organs it was possible to generate in some detail a fate map of the mesoderm of the stage 11 Drosophila embryo. Offprint requests to: V. Hartenstein  相似文献   

6.
To facilitate the monitoring of guard cells during developmentand isolation, a population of 704 GAL4 GFP enhancer trap lineswas screened and four single insert lines with guard cell GFPexpression and one with developmentally-regulated guard cellGFP expression were identified. The location of the T-DNA inserts,the expression of the flanking genes, and the promoter activityof the genomic DNA upstream of the T-DNA were characterized.The results indicated that the GFP expression pattern in atleast one of the lines was due to elements in the intergenicDNA immediately upstream of the T-DNA, rather than due to theactivity of the promoters of genes flanking the insert, andprovide evidence for the involvement of Dof elements in regulatingguard cell gene expression. It is shown further that the GAL4GFP lines can be used to track the contribution of guard cellmaterial in vitro, and this method was used to assess the purityof guard cell samples obtained using two methods of guard cellisolation. Key words: Arabidopsis, development, enhancer trap, GFP, guard cells, stomata, T-DNA Received 21 July 2008; Revised 7 October 2008 Accepted 16 October 2008  相似文献   

7.
In multicellular organisms different types of tissues have distinct gene expression profiles associated with specific function or structure of the cell. Quantification of gene expression in whole organs or whole organisms can give misleading information about levels or dynamics of expression in specific cell types. Tissue‐ or cell‐specific analysis of gene expression has potential to enhance our understanding of gene regulation and interactions of cell signalling networks. The Arabidopsis circadian oscillator is a gene network which orchestrates rhythmic expression across the day/night cycle. There is heterogeneity between cell and tissue types of the composition and behaviour of the oscillator. In order to better understand the spatial and temporal patterns of gene expression, flexible tools are required. By combining a Gateway®‐compatible split luciferase construct with a GAL4 GFP enhancer trap system, we describe a tissue‐specific split luciferase assay for non‐invasive detection of spatiotemporal gene expression in Arabidopsis. We demonstrate the utility of this enhancer trap‐compatible split luciferase assay (ETSLA) system to investigate tissue‐specific dynamics of circadian gene expression. We confirm spatial heterogeneity of circadian gene expression in Arabidopsis leaves and describe the resources available to investigate any gene of interest.  相似文献   

8.
We present a pilot enhancer trap screen using GAL4 to drive expression of upstream activator sequence (UAS)-linked transgenes in expression patterns dictated by endogenous enhancers in zebrafish. The patterns presented include expression in small subsets of neurons throughout the larval brain, which in some cases persist into adult. Through targeted photoconversion of UAS-driven Kaede and variegated expression of UAS-driven GFP in single cells, we begin to characterize the cellular components of labeled circuits.  相似文献   

9.
He Y  Tang W  Swain JD  Green AL  Jack TP  Gan S 《Plant physiology》2001,126(2):707-716
The last phase of leaf development, generally referred to as leaf senescence, is an integral part of plant development that involves massive programmed cell death. Due to a sharp decline of photosynthetic capacity in a leaf, senescence limits crop yield and forest plant biomass production. However, the biochemical components and regulatory mechanisms underlying leaf senescence are poorly characterized. Although several approaches such as differential cDNA screening, differential display, and cDNA subtraction have been employed to isolate senescence-associated genes (SAGs), only a limited number of SAGs have been identified, and information regarding the regulation of these genes is fragmentary. Here we report on the utilization of enhancer trap approach toward the identification and analysis of SAGs. We have developed a sensitive large-scale screening method and have screened 1,300 Arabidopsis enhancer trap lines and have identified 147 lines in which the reporter gene GUS (beta-glucuronidase) is expressed in senescing leaves but not in non-senescing ones. We have systematically analyzed the regulation of beta-glucuronidase expression in 125 lines (genetically, each contains single T-DNA insertion) by six senescence-promoting factors, namely abscisic acid, ethylene, jasmonic acid, brassinosteroid, darkness, and dehydration. This analysis not only reveals the complexity of the regulatory circuitry but also allows us to postulate the existence of a network of senescence-promoting pathways. We have also cloned three SAGs from randomly selected enhancer trap lines, demonstrating that reporter expression pattern reflects the expression pattern of the endogenous gene.  相似文献   

10.
The Drosophila testis has proven to be a valuable model organ for investigation of germline stem cell (GSC) maintenance and differentiation as well as elucidation of the genetic programs that regulate differentiation of daughter spermatogonia. Development of germ cell specific GAL4 driver transgenes has facilitated investigation of gene function in GSCs and spermatogonia but specific GAL4 tools are not available for analysis of postmitotic spermatogonial differentiation into spermatocytes. We have screened publically available pGT1 strains, a GAL4‐encoding gene trap collection, to identify lines that can drive gene expression in late spermatogonia and early spermatocytes. While we were unable to identify any germline‐specific drivers, we did identify an insertion in the chiffon locus, which drove expression specifically in early spermatocytes within the germline along with the somatic cyst cells of the testis. genesis 50:914–920, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
利用GAL4-UAS系统在果蝇中过表达研究人类基因功能   总被引:1,自引:0,他引:1  
随着人类基因组测序的基本完成 ,大量新基因被发现 ,其中许多只有序列及基因组定位信息。新的焦点是这些新基因的功能研究。模式生物果蝇对此起重要作用。利用转基因果蝇和GAL4 UAS系统初步鉴定功能基因 ,建立了源于 10个不同人类基因的共 5 4个转基因果蝇品系 ,然后用 6种不同的GAL4诱导这些转基因在果蝇中过量表达。其中一个人类基因 ,延伸因子 1alpha 1(EF1α 1)的过表达导致果蝇的背板异常和糙眼表型。该研究表明可在果蝇中利用基因过表达策略初筛人类功能基因 ,这为大规模人类基因的功能研究提供了新的手段  相似文献   

12.
13.
14.
15.
A gene-trap system is established for Drosophila. Unlike the conventional enhancer-trap system, the gene-trap system allows the recovery only of fly lines whose genes are inactivated by a P-element insertion, i.e., mutants. In the gene-trap system, the reporter gene expression reflects precisely the spatial and temporal expression pattern of the trapped gene. Flies in which gene trap occurred are identified by a two-step screening process using two independent markers, mini-w and Gal4, each indicating the integration of the vector downstream of the promoter of a gene (dual tagging). mini-w has its own promoter but lacks a polyadenylation signal. Therefore, mini-w mRNA is transcribed from its own promoter regardless of the vector integration site in the genome. However, the eyes of flies are not orange or red unless the vector is incorporated into a gene enabling mini-w to be spliced to a downstream exon of the host gene and polyadenylated at the 3' end. The promoter-less Gal4 reporter is expressed as a fusion mRNA only when it is integrated downstream of the promoter of a host gene. The exons of trapped genes can be readily cloned by vectorette RT-PCR, followed by RACE and PCR using cDNA libraries. Thus, the dual-tagging gene-trap system provides a means for (i) efficient mutagenesis, (ii) unequivocal identification of genes responsible for mutant phenotypes, (iii) precise detection of expression patterns of trapped genes, and (iv) rapid cloning of trapped genes.  相似文献   

16.
Hydroxyurea (HU) treatment of early first instar larvae in Drosophila was previously shown to ablate a single dividing lateral neuroblast (LNb) in the brain. Early larval HU application to P[GAL4] strains that label specific neuron types enabled us to identify the origins of the two major classes of interneurons in the olfactory system. HU treatment resulted in the loss of antennal lobe local interneurons and of a subset of relay interneurons (RI), elements usually projecting to the calyx and the lateral protocerebrum (LPR). Other RI were resistant to HU and still projected to the LPR. However, they formed no collaterals in the calyx region (which was also ablated), suggesting that their survival does not depend on targets in the calyx. Hence, the ablated interneurons were derived from the LNb, whereas the HU-resistant elements originated from neuroblasts which begin to divide later in larval life. Developmental GAL4 expression patterns suggested that differentiated RI are present at the larval stage already and may be retained through metamorphosis. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 443–456, 1997  相似文献   

17.
Konev AY  Yan CM  Acevedo D  Kennedy C  Ward E  Lim A  Tickoo S  Karpen GH 《Genetics》2003,165(4):2039-2053
Heterochromatin is a major component of higher eukaryotic genomes, but progress in understanding the molecular structure and composition of heterochromatin has lagged behind the production of relatively complete euchromatic genome sequences. The introduction of single-copy molecular-genetic entry points can greatly facilitate structure and sequence analysis of heterochromatic regions that are rich in repeated DNA. In this study, we report the isolation of 502 new P-element insertions into Drosophila melanogaster centric heterochromatin, generated in nine different genetic screens that relied on mosaic silencing (position-effect variegation, or PEV) of the yellow gene present in the transposon. The highest frequencies of recovery of variegating insertions were observed when centric insertions were used as the source for mobilization. We propose that the increased recovery of variegating insertions from heterochromatic starting sites may result from the physical proximity of different heterochromatic regions in germline nuclei or from the association of mobilizing elements with heterochromatin proteins. High frequencies of variegating insertions were also recovered when a potent suppressor of PEV (an extra Y chromosome) was present in both the mobilization and selection generations, presumably due to the effects of chromatin structure on P-element mobilization, insertion, and phenotypic selection. Finally, fewer variegating insertions were recovered after mobilization in females, in comparison to males, which may reflect differences in heterochromatin structure in the female and male germlines. FISH localization of a subset of the insertions confirmed that 98% of the variegating lines contain heterochromatic insertions and that these schemes produce a broader distribution of insertion sites. The results of these schemes have identified the most efficient methods for generating centric heterochromatin P insertions. In addition, the large collection of insertions produced by these screens provides molecular-genetic entry points for mapping, sequencing, and functional analysis of Drosophila heterochromatin.  相似文献   

18.
The enhancer of split locus and neurogenesis in Drosophila melanogaster   总被引:11,自引:0,他引:11  
Enhancer of split (E(spl)) is one of a group of so-called neurogenic genes of Drosophila. We describe two different types of E(spl) alleles, dominant and recessive, which exert opposite effects on both central and peripheral nervous system development. The only extant dominant allele determines a reduction in the number of central neurons and peripheral sensilla; this phenotype is not reduced by a normal complement of wild-type alleles. Since animals carrying a triploidy for the wild-type locus develop similar defects, the dominant allele is probably the result of a gain-of-function mutation. Several recessive alleles, obtained as revertants of the dominant allele, are loss-of-function mutations and determine considerable neural hyperplasia. The present evidence suggests that neural defects of E(spl) mutants are due to defective segregation of neural and epidermal lineages, leading to neural commitment of less or of more cells than in the wild type, depending upon whether the animals carry the dominant or any of the recessive alleles, respectively. Therefore, E(spl) formally behaves as a gene switching between neural and epidermal pathways.  相似文献   

19.
The phase of expression of genes CycB, CycE, and chb were determined in the cell cycle of neuroblasts of D. melanogaster 3rd instar larvae using the previously described radioautographic method and software. CycB was expressed at G2 phase and upon transition from G2 phase to M phase, while CycE was expressed at the end of G1 phase and upon transition from G1 phase to S phase. The phase of expression of the centrosome-associated protein was determined more precisely in G2 phase. The mean life span of reporter beta-galactosidase in neuroblasts was 4 h. The existence of more than one peak of expression of the gene in question in the cell cycle is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号