首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Blackspot, caused by the Ascomycete fungus Diplocarpon rosae, is the most widespread and pernicious disease of cultivated roses. While some species of rose possess resistance to D. rosae, none of the modern-day rose cultivars are fully resistant to the pathogen. In the current study, Biolistic gene delivery was used to introduce a rice gene, encoding a basic (Class I), chitinase into embryogenic callus of the blackspot-susceptible rose (Rosa hybrida L.) cv. Glad Tidings. The plasmid used for transformation carried the neomycin phosphotransferase (nptII) gene facilitating the selection and regeneration of transgenic plants on medium containing 250 mg/l kanamycin. Southern analysis confirmed integration of 2–6 copies of the chitinase gene into the rose genome; gene expression was confirmed by enzyme assay. Bioassays demonstrated that expression of the chitinase transgene reduced the severity of blackspot development by 13–43%. This degree of resistance to the pathogen correlated with the level of chitinase expression in the transgenic rose plants. The introduction of disease defence genes into rose provides a method of producing blackspot-resistant rose cultivars sought by breeders and growers.  相似文献   

2.
Elite white maize lines W506 and M37W were transformed with a selectable marker gene (bar) and a reporter gene (uidA) or the polygalacturonase-inhibiting protein (pgip) gene after bombardment of cultured immature zygotic embryos using the particle inflow gun. Successful transformation with this device did not require a narrow range of parameters, since transformants were obtained from a wide range of treatments, namely pre-culture of the embryos for 4-6 days, bombardment at helium pressures of 700-900 kPa, selection-free culture for 2-4 days after bombardment and selection on medium containing bialaphos at 0.5-2 mg l-1. However, bombardments with helium pressures below 700 kPa yielded no transformants. The culture of immature zygotic embryos of selected elite white maize lines on medium containing 2 mg l-1 2,4-dichlorophenoxyacetic acid and 20 mM L-proline proved to be most successful for the production of regenerable embryogenic calli and for the selection of putative transgenic calli on bialaphos-containing medium after transformation. Transgenic plants were obtained from four independent transformation events as confirmed by Southern blot analysis. Transmission of the bar and uidA genes to the T4 progeny of one of these transformation events was demonstrated by Southern blot analysis and by transgene expression. In this event, the transgenes bar and uidA were inserted in tandem.  相似文献   

3.
Genetically transformed roots and calli were induced from leafsegments of grapevine (Vitis vinifera L. cv. Koshusanjaku) afterco-cultivation with wild-type Agrobacterium rhizogenes strains,but plant regenera tion from them was not achieved. On the otherhand, transgenlc grapevine plants were obtained via somaticembryogenesis after co-cultivation of embryogenic calli withan engineered A. rhizogenes strain including both the neomycinphosphotransferase II (NPT II) and the ß-glucuronidase(GUS) genes, followed by selection of secondary embryos forkanamycin resistance. All these plants showed GUS gene expressionrevealed by histochemical assay. Southern blot analysis revealedthe stable integration of the GUS cording region in their genome.Transformants containing Ri T-DNA exhibited various phenotypes:most of them showed a typical Ri-transformed phenotype suchas wrinkled leaves, while the others looked normal. Key words: Agrobacterium rhizogenes, grapevine, transgenic plants, Vitis vinifera  相似文献   

4.
5.
GILL  RAVINDER 《Annals of botany》1990,66(1):31-39
Epicotyl-derived protoplasts of Psophocarpus tetragonolobuswere isolated and regenerated to plants. These protoplasts weretransformed to kanamycin resistance following uptake of plasmid(pABDl or pHP23) DNA in combination with PEG treatment. Protoplast-derivedtransformed colonies were selected on kanamycin (75 mg l–1).The transformed calli expressed NPT II activity and also exhibitedthe presence of the plasmid gene integrated into the plant genome.However, none of the transformed clones showed regenerationof shoot buds. Psophocarpus tetragonolobus, winged bean, naked DNA transformation, protoplast culture, regenerated plants  相似文献   

6.
Fertile transgenic barley generated by direct DNA transfer to protoplasts   总被引:2,自引:0,他引:2  
We report the generation of transgenic barley plants via PEG-mediated direct DNA uptake to protoplasts. Protoplasts isolated from embryogenic cell suspensions of barley (Hordeum vulgare L. cv Igri) were PEG-treated in a solution containing a plasmid which contained the neomycin phosphotransferase (NPT II) gene under the control of the rice actin promoter and the nos terminator. Colonies developing from the treated protoplasts were incubated in liquid medium containing the selective antibiotic G418. Surviving calli were subsequently transferred to solid media containing G418, on which embryogenic calli developed. These calli gave rise to albino and green shoots on antibiotic-free regeneration medium. NPT II ELISA revealed that approximately half of the morphogenic calli expressed the foreign gene. In total, 12 plantlets derived from NPT-positive calli survived transfer to soil. Southern hybridization analysis confirmed the stable transformation of these plants. However, the foreign gene seemed to be inactivated in plants from one transgenic line. Most of the transgenic plants set seed, and the foreign gene was transmitted and expressed in their progenies, which was ascertained by Southern hybridization and NPT II ELISA.  相似文献   

7.
A transformation system is described for Solanum dulcamara usingthe supervirulentAgrobacterium tumefaciens strain 1065, carryingboth the ß-glucuronidase (gus) and neomycin phosphotransferaseII (npt II) genes adjacent to the right and left T-DNA borders,respectively. Leaf explants were more efficient for the productionof transformed plants compared to stem explants on medium containing50 mg l-1of kanamycin sulphate. A 1:10 (v:v) dilution of anovernight culture ofAgrobacterium gave optimal transformationin terms of transgenic plant regeneration. From a total of 174kanamycin-resistant plants selected by their antibiotic resistance,16 failed to exhibit GUS activity. Southern analysis revealedthat these GUS-negative transformants originated from threeindependently transformed cell lines. Restriction enzyme analysesshowed that the GUS-negative plants had both the gus and nptII genes integrated into their genome (one plant had a singlecopy of each gene; the other two plants had multiple copies),with major rearrangement of the gus gene occurring in plantswith several copies of the transgene. GUS-negative plants showedleaf malformations, delayed flowering and a reduction in flower,fruit and seed production compared to GUS-positive and non-transformed(control) plants. Although gene silencing of the gus gene occurred,albeit at a low frequency (9.2%), the transformation systemdescribed generates large numbers of phenotypically normal,stably transformed plants. Copyright 2000 Annals of Botany Company Agrobacterium -mediated transformation, gene silencing, Solanum dulcamara L. (Bittersweet, Woody Nightshade), T-DNA truncation, transgene expression  相似文献   

8.
Petal abscission was studied in roses (Rosa hybrida L.), cvs.Korflapei (trade name Frisco), Sweet Promise (Sonia) and CaraMia (trade name as officially registered cultivar name). Unlikeflowers on plants in greenhouses, cut flowers placed in waterin the greenhouse produced visible symptoms of water stress,depending on the weather during the experiment and on the cultivar.Cut Frisco roses showed no visible signs of water stress andthe time to petal abscission was as in uncut flowers. In Soniaroses the symptoms of water stress varied from mild to severe,and the number of flowers in which the petals abscised variedfrom 100% (mild stress) to 0% (severe stress). An antimicrobialcompound in the vase water of Sonia roses, or removal of theleaves, alleviated the symptoms of water stress and increasedthe number of stems in which the petals abscised. Cut Cara Miaroses showed severe symptoms of water stress in all experimentsand petal abscission was found in only a few flowers, even whenthe stems were placed at 20 °C and low photon flux (15 µmolm-2s-1). Abscission in Sonia and Cara Mia roses was low or absentwhen the water potential of the leaves reached values below-2.0 MPa within the first 5 d of the experiment; such low valueswere not reached in Frisco roses. Addition of sucrose to the vase solution, together with an effectiveantimicrobial compound, had no effect on the time to petal abscission,at any light intensity. Placing flowers in far-red light alsohad no effect on abscission, compared with flowers placed inred light or white light of the same photon fluence. It is concluded that petal abscission in the rose cultivarsstudied is not affected by their water status unless the plantsreach a low water potential (about -2 MPa) early on during vaselife. Petal abscission is not inhibited by low light intensitynor affected by the Pr/Pfr ratio. Abscission; light intensity; petals; phytochrome; Rosa hybrida L.; rose; sugars; water potential  相似文献   

9.
Perennial ryegrass (Lolium perenne L.) is the most important grass species in areas with a temperate climate. Biolistic transfer of a ubiquitin promoter driven nptII expression cassette into mature or immature tissue derived calli of perennial ryegrass followed by paromomycin selection, resulted in the rapid and efficient production of fertile transgenic ryegrass plants. Transformation efficiencies after paromomycin selection in combination with the nptII selectable marker compared favourably with hygromycin selection in combination with the hph selectable marker. In total 83 independent nptII expressing plants were produced. Transformation frequency was highly affected by genotype, explant, selection regime and the duration of the callus induction period. The optimised transformation protocol for mature embryo derived calli of turf-type or forage-type cultivars resulted in an average transformation efficiency of 5.2% or 6.6% respectively. This converts into 1.7 or 2.2 independent transgenic plants per bombardment. Immature inflorescence- and immature embryo-derived calli were also successfully used as target for the gene transfer, resulting in transformation efficiencies of up to 3.7% or 11.42% respectively. Transgenic plants were transferred to soil 12 or 9 weeks after excision of mature and immature embryos or inflorescences respectively. Transgene integration and expression were confirmed by PCR and ELISA or western blot analysis. Southern blot analysis confirmed the independent nature of the transgenic lines. The majority of lines showed the integration of two to six transgene copies, while 21% of the analysed lines had a single copy insert. A short tissue culture period in comparison to recently published reports seems to be beneficial for the production of normal and fertile transgenic ryegrass plants. Consequently we report for the first time molecular evidence for sexual transgene transmission in fertile transgenic perennial ryegrass.  相似文献   

10.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

11.
AnAgrobacterium-mediated gene transfer system with recovery of putative transformants was developed for cotton (Gossypium hirsutum L.) cv. Cocker-312. Two-month-old hypocotyl-derived embryogenic calli were infected through agroinfiltration for 10 min at 27 psi in a suspension ofAgrobacterium tumefaciens strain GV3101 carrying tDNA with theGUS gene, encoding β-glucuronidase (GUS), and the neomycin phosphotransferase II (nptII) gene as a kanamycin-resistant plant-selectable marker. Six days after the histochemicalGUS assay was done, 46.6% and 20%GUS activity was noted with the vacuum-infiltration and commonAgrobacterium-mediated transformation methods, respectively. The transformed embryogenic calli were cultured on selection medium (100 mg/L and 50 mg/L kanamycin for 2 wk and 10 wk, respectively) for 3 mo. The putative transgenic plants were developed via somatic embryogenesis (25 mg/L kanamycin). In 4 independent experiments, up to 28.23% transformation efficiency was achieved. PCR amplification and Southern blot analysis fo the transformants were used to confirm the integration of the transgenes. Thus far, this is the only procedure available for cotton that can successfully be used to generate cotton transformants.  相似文献   

12.
Lolium rigidum Gaud. is an annual grass grown for forage but also an economically damaging crop weed. A single genotype somatic embryogenic callus line, VLR1-60, was identified from a herbicide susceptible L. rigidum population, VLR1, and proved to be amenable to Agrobacterium tumefaciens-mediated transformation. Somatic embryogenic calli were continuously induced from the meristematic region of VLR1-60 plants multiplied in vitro and the basic tolerance level of VLR1-60 to hygromycin B was determined. A hygromycin phosphotransferase gene was used as a selectable marker for hygromycin B selection. Somatic embryogenic calli derived from in vitro grown vegetative tillers were co-cultivated with the A. tumefaciens strain EHA105 harbouring binary vector carrying reporter genes and selectable marker in the presence of acetosyringone for 3 days. Inoculated calli were recovered on callus proliferation medium containing Timentin? but lacking hygromycin and were then subcultured onto media with hygromycin concentrations increased progressively through time for selection of transformed plant cells. Putative transgenic plants were recovered and integration of transgenes was confirmed by Southern hybridization analysis and by detection of DsRed or GUS activity in transgenic plants. The frequency of plant transformation was 1.3 %. The ability to transform L. rigidum will provide opportunities for functional characterization of genes to improve forage quality and increase our understanding of the evolution of herbicide resistance and of the basic genetics underlying traits that make L. rigidum a damaging crop weed.  相似文献   

13.
We have developed a system to produce transgenic plants in tea (Camelia sinensis [L.] O. Kuntze) viaAgrobacterium tumefaciens-mediated transformation of embryogenic calli. Cotyledon-derived embryogenic callus cultures were cocultivated with anA. tumefaciens strain (AGL 1) harboring a binary vector carrying the hygromycin phosphotransferase (hpt II), glucuronidase (uid A), and green fluorescent protein (GFP) genes in the tDNA region. Following cocultivation, embryogenic calli were cultured in medium containing 500 mg/L carbenicillin for 1 wk and cultured on an antibiotic selection medium containing 75 mg/L hygromycin for 8–10 wk. Hygromycin-resistant somatic embryos were selected. The highest production efficiency of hygromycin-resistant calli occurred with cocultivation for 6–7 d in the presence of 400 μM acetosyringone (AS). Hygromycin-resistant somatic embryos developed into complete plantlets in regeneration medium containing half-strength Murashige and Skoog (MS) salts with 1 mg/L benzyl amino purine (BAP) and 9 mg/L giberellic acid (GA3). Transformants were subjected to GFP expression analysis, β-glucuronidase (GUS) histochemical assay, PCR analysis, and Southern hybridization to confirm gene integration.  相似文献   

14.
Kim  C.K.  Chung  J.D.  Park  S.H.  Burrell  A.M.  Kamo  K.K.  Byrne  D.H. 《Plant Cell, Tissue and Organ Culture》2004,78(2):107-111
Embryogenic calluses of Rosa hybrida cultivar Tineke were transformed with Agrobacterium tumefaciens strain LBA4404 containing the binary vector pBIN m-gfp5-ER into which the virE/virG genes had been inserted. Visualization of GFP-expressing cells enabled visual selection of dividing, embryogenic cell clusters that were transgenic. When the Agrobacterium strain with the bifunctional fusion marker containing additional virE/virG genes was used, the number of green fluorescent calluses increased. Transformation of the GFP-expressing rose plants was confirmed by Southern blot analysis.  相似文献   

15.
An enzyme assay was developed to measure the initial and Mg2+–CO2activated forms of Ribulose 1,5-bisphosphate Carboxylase/Oxygenase(Rubisco) in rose leaves. The assay was verified by co-extractionof the leaflets with partially purified spinach Rubisco andthrough correlation with net photosynthetic rates of individualleaflets (r2=0.7324). Changes in activities were measured asa function of depth of leaves in the canopy for two cultivarsof greenhouse hybrid tea roses. Initial Rubisco activity declinedwith increasing canopy depth for both cultivars. The activatedform of the enzyme, however, remained constant with canopy depthfor cv. Red Success; but increased with canopy depth, then declinedafter mid-canopy in the cv. Royalty. Rubisco activities werealso measured in the cv. Red Success grown in CO2 enriched environments(100 mm3 dm–3) at three humidity levels. The activitieswere not significantly affected by humidity treatment. However,there was a trend for plants grown at lower humidity to havehigher activated activities. Key words: Humidity, Rubisco, Rosa ? hybrida, Royalty, Red Success  相似文献   

16.
Transgenic maize plants by tissue electroporation.   总被引:24,自引:1,他引:23       下载免费PDF全文
In this paper, we describe the transformation of regenerable maize tissues by electroporation. In many maize lines, immature zygotic embryos can give rise to embryogenic callus cultures from which plants can be regenerated. Immature zygotic embryos or embryogenic type I calli were wounded either enzymatically or mechanically and subsequently electroporated with a chimeric gene encoding neomycin phosphotransferase (neo). Transformed embryogenic calli were selected from electroporated tissues on kanamycin-containing media and fertile transgenic maize plants were regenerated. The neo gene was transmitted to the progeny of kanamycin-resistant transformants in a Mendelian fashion. This showed that all transformants were nonchimeric, suggesting that transformation and regeneration are a single-cell event. The maize transformation procedure presented here does not require the establishment of genotype-dependent embryogenic type II callus or cell suspension cultures and facilitates the engineering of new traits into agronomically relevant maize inbred lines.  相似文献   

17.

Key message

The P SAG12 -ipt gene was transferred to miniature rose, as the first woody species, resulting in increased ethylene resistance due to specific up-regulation of the ipt gene under senescence promoting conditions.

Abstract

Transgenic plants of Rosa hybrida ‘Linda’ were obtained via transformation with Agrobacterium tumefaciens strain harboring the binary vector pSG529(+) containing the P SAG12 -ipt construct. A. tumefaciens strains AGL1, GV3850 and LBA4404 (containing P35S-INTGUS gene) were used for transformation of embryogenic callus, but transgenic shoots were obtained only when AGL1 was applied. The highest transformation frequency was 10 % and it was achieved when half MS medium was used for the dilution of overnight culture of Agrobacterium. Southern blot confirmed integration of 1–6 copies of the nptII gene into the rose genome in the tested lines. Four transgenic lines were obtained which were morphologically true-to-type and indistinguishable from Wt shoots while they were in in vitro cultures. Adventitious root induction was more difficult in transgenic shoots compared to the Wt shoots, however, one of the transgenic lines (line 6) was rooted and subsequently analyzed phenotypically. The ipt expression levels were determined in this line after exposure to exogenous ethylene (3.5 μl l?1) and/or darkness. Darkness resulted in twofold up-regulation of ipt expression, whereas darkness combined with ethylene caused eightfold up-regulation in line 6 compared to Wt plants. The transgenic line had significantly higher content of chlorophyll at the end of the treatment period compared to Wt plants.  相似文献   

18.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

19.
Rugosa rose (Rosa rugosa) is cultivated as a garden flower and an important genetic resource for the breeding of roses (R. hybrida). This study describes culture conditions for high frequency plant regeneration from zygotic embryo explants via somatic embryogenesis in rugosa rose. Mature zygotic embryo, cotyledon, and radicle explants formed embryogenic calluses at frequencies of 38, 6.7, and 8.8% when cultured on half-strength Murashige and Skoog medium (½MS) supplemented with 2.26, 9.05, and 9.05 μM 2,4-dichlorophenoxyacetic acid, respectively. Embryogenic calluses produced numerous somatic embryos, which then developed into plantlets on ½MS without growth regulators. Regenerated plantlets were grown to whole plants in a growth chamber.  相似文献   

20.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号