首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pilot-scale reactive-extraction technology for fully integrated L-phenylalanine (L-Phe) separation in Escherichia coli fed-batch fermentations was investigated in order to prevent an inhibition of microbial L-Phe production by-product accumulation. An optimal reactive-extraction system, consisting of an organic kerosene phase with the cation-selective carrier DEHPA (di-2-ethylhexyl phosphonic acid) and an aqueous stripping phase including sulphuric acid, was found particularly efficient. Using this system with two membrane contactors, mass-transfer coefficients of up to 288 x 10(-7) cm s(-1) for the aqueous/organic and 77 x 10(-7) cm s(-1) for the organic/stripping phase were derived from experimental data using a simple modelling approach. Concentration factors higher than 4 were achieved in the stripping phase as compared to the aqueous donor phase. Reactive extraction enabled a 98% cation portion of L-Phe in the stripping phase, leading to final product purity higher than 99% after L-Phe precipitation. A doubling of L-Phe/glucose yield was observed when kerosene/DEHPA was added to the fermentation solution in the bioreactor to experimentally simulate a fully integrated L-Phe separation process.  相似文献   

2.
The bioconversion of L-phenylalanine (L-Phe) to 2-phenylethanol (PEA) by the yeast Saccharomyces cerevisiae is limited by the toxicity of the product. PEA extraction by a separate organic phase in the fermenter is the ideal in situ product recovery (ISPR) technique to enhance productivity. Oleic acid was chosen as organic phase for two-phase fed-batch cultures, although it interfered to some extent with yeast viability. There was a synergistic inhibitory impact toward S. cerevisiae in the presence of PEA, and therefore a maximal PEA concentration in the aqueous phase of only 2.1 g/L was achieved, compared to 3.8 g/L for a normal fed-batch culture. However, the overall PEA concentration in the fermenter was increased to 12.6 g/L, because the PEA concentration in the oleic phase attained a value of 24 g/L. Thus, an average volumetric PEA production rate of 0.26 g L(-1) h(-1) and a maximal volumetric PEA production rate of 0.47 g L(-1) h(-1) were achieved in the two-phase fed-batch culture. As ethanol inhibition had to be avoided, the production rates were limited by the intrinsic oxidative capacity of S. cerevisiae. In addition, the high viscosity of the two-phase system lowered the k(l)a, and therefore also the productivity. Thus, if a specific ISPR technique is planned, it consequently has to be remembered that the productivity of this bioconversion process is also quickly limited by the k(l)a of the fermenter at high cell densities.  相似文献   

3.
Using the pyruvate production strain Escherichia coli YYC202 ldhA::Kan different process alternatives are studied with the aim of preventing potential product inhibition by appropriate product separation. This strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate, resulting in acetate auxotrophy during growth in glucose minimal medium. Continuous experiments with cell retention, repetitive fed-batch, and an in situ product recovery (ISPR) process with fully integrated electrodialysis were tested. Although the continuous approach achieved a high volumetric productivity (QP) of 110 g L(-1) d(-1), this approach was not pursued because of long-term production strain instabilities. The highest pyruvate/glucose molar yield of up to 1.78 mol mol(-1) together with high QP 145 g L(-1) d(-1) and high pyruvate titers was achieved by the repetitive fed-batch approach. To separate pyruvate from fermentation broth a fully integrated continuous process was developed. In this process electrodialysis was used as a separation unit. Under optimum conditions a (calculated) final pyruvate titer of >900 mmol L(-1) (79 g L(-1)) was achieved.  相似文献   

4.
The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10 years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented.  相似文献   

5.
An unstructured model for an integrated fermentation/membrane extraction process for the production of the aroma compounds 2-phenylethanol and 2-phenylethylacetate by Kluyveromyces marxianus CBS 600 was developed. The extent to which this model, based only on data from the conventional fermentation and separation processes, provided an estimation of the integrated process was evaluated. The effect of product inhibition on specific growth rate and on biomass yield by both aroma compounds was approximated by multivariate regression. Simulations of the respective submodels for fermentation and the separation process matched well with experimental results. With respect to the in situ product removal (ISPR) process, the effect of reduced product inhibition due to product removal on specific growth rate and biomass yield was predicted adequately by the model simulations. Overall product yields were increased considerably in this process (4.0 g/L 2-PE+2-PEA vs. 1.4 g/L in conventional fermentation) and were even higher than predicted by the model. To describe the effect of product concentration on product formation itself, the model was extended using results from the conventional and the ISPR process, thus agreement between model and experimental data improved notably. Therefore, this model can be a useful tool for the development and optimization of an efficient integrated bioprocess.  相似文献   

6.
The rapid and reversible electron transfer reaction of cytochrome b562 was observed at an In2O3 electrode. The estimated heterogeneous electron transfer rate constant (k0') was k0' > or = 5.0 x 10(-3) cm s(-1) at pH 6.5. When the methionine-7 (Met-7) residue, which coordinates to the heme iron as an axial ligand, of the wild-type cytochrome b562 was replaced by an Ala or Gly residue, a water molecule bound to the heme iron and the electron transfer rate constants decreased to 1.3 x 10(-3) and 1.8 x 10(-3) cm s(-1), respectively. This decrease in the electron transfer rate would be due to the larger reorganization energy for the structural change at the redox site. The midpoint potential of cytochrome b562 was shifted negatively by approximately 135 mV by replacing Met-7 with Ala or Gly. Similar dissociation kinetics of cyanide for the mutated molecules as compared to native myoglobin was obtained.  相似文献   

7.
A novel fed-batch approach for the production of L-phenylalanine (L-Phe) with recombinant E. coli is presented concerning the on-line control of the key fermentation parameters glucose and tyrosine. Two different production strains possessing either the tyrosine feedback resistant aroF(fbr) (encoding tyrosine feedback resistant DAHP-synthase (3-desoxy-D-arabino-heptusonate-7-phosphate)) or the wild-type aroF(wt) were used as model systems to elucidate the necessity of finding an individual process optimum for each genotype. With the aid of tyrosine control, wild-type aroF(wt) could be used for L-Phe production achieving higher final L-Phe titers (34 g/L) than the aroF(fbr) strain (28 g/L) and providing higher DAHP-synthase activities. With on-line glucose control, an optimum glucose concentration of 5 g/L could be identified that allowed a sufficient carbon supply for L-Phe production while at the same time an overflow metabolism leading to acetate by-product formation was avoided. The process approach is suitable for other production strains not only in lab-scale but also in pilot-scale bioreactors.  相似文献   

8.
A novel in situ product removal (ISPR) method that uses microcapsules to extract inhibitory products from the reaction suspension is introduced into fermentation technology. More specifically, L-phenylalanine (L-Phe) was transformed by Saccharomyces cerevisiae to 2-phenylethanol (PEA), which is inhibitory toward the yeast. In order to continuously remove PEA from the vicinity of the cells, the reaction suspension was brought into contact with capsules of 2.2-mm diameter that had a hydrophobic core of dibutyl sebacate and an alginate-based wall. This novel process combines the advantages of a normal in situ extraction process (fast mass transfer and simple process set-up) with the benefits of a membrane-based process (reduction of the solvent toxicity and avoidance of stable emulsions). In particular, the microbial cells are shielded from the phase toxicity of the organic solvent by a hydrogel layer surrounding the organic core. By placing the microcapsules into the fermenter, the final overall concentration of PEA in a fed-batch culture was increased from 3.8 to 5.6 g/L because a part of the inhibitory product dissolved in the dibutyl sebacate core. In another fermentation experiment, the capsules were placed in a fluidized bed that was connected via a loop to the fermenter. In addition, the fluidized bed was connected via a second loop to a back-extractor to regenerate the capsules. By alternating the extraction and back-extraction cycles, it was possible to limit the PEA concentration of the fed-batch culture in the fermenter to 2.4 g/L while producing important quantities of PEA that accumulated in an external reservoir.  相似文献   

9.
The spin trap N-2-(2-ethoxycarbonyl-propyl) alpha-phenylnitrone, EPPN 1, synthesized by methods previously described, has been purified by recrystallization. A measure of its octanol-phosphate buffer partition coefficient (P(oct) = 29.8) indicated that EPPN was quite lipophilic, yet it could be easily solubilized in water up to 60 mmol L(-1). Although this nitrone was unsuitable for detecting hydroxyl radical, it efficiently trapped several carbon-centered radicals as well as superoxide in aqueous media, without yielding any artifactual signals. Kinetic studies of the superoxide adduct decay gave rate constants k(D) of 2 x 10(-3) and 2.1 x 10(-3) s(-1) at pH 5.6 and pH 7, respectively. EPPN can be considered as an easily prepared and highly pure spin trap, allowing efficient detection of superoxide in aqueous environments.  相似文献   

10.
Selecting an appropriate separation technique is essential for the application of in situ product removal (ISPR) technology in biological processes. In this work, a three-stage systematic design method is proposed as a guide to integrate ionic liquid (IL)-based separation techniques into ISPR. This design method combines the selection of a suitable ISPR processing scheme, the optimal design of an IL-based liquid–liquid extraction (LLE) system followed by process simulation and evaluation. As a proof of concept, results for a conventional acetone–butanol–ethanol fermentation are presented (40,000 ton/year butanol production). In this application, ILs tetradecyl(trihexyl)phosphonium tetracyanoborate ([TDPh][TCB]) and tetraoctylammonium 2-methyl-1-naphthoate ([TOA] [MNaph]) are identified as the optimal solvents from computer-aided IL design (CAILD) method and reported experimental data, respectively. The dynamic simulation results for the fermentation process show that, the productivity of IL-based in situ (fed-batch) process and in situ (batch) process is around 2.7 and 1.8fold that of base case. Additionally, the IL-based in situ (fed-batch) process and in situ (batch) process also have significant energy savings (79.6% and 77.6%) when compared to the base case.  相似文献   

11.
Biosynthetic and model in vitro studies have shown that pheomelanins, the distinctive pigments of red human hair, arise by oxidative cyclization of cysteinyldopas mainly 5-S-cysteinyldopa (1) via a critical o-quinonimine intermediate, which rearranges to unstable 1,4-benzothiazines. To get new evidence for these labile species, fast time resolution pulse radiolytic oxidation by dibromide radical anion of a suitable precursor, the dihydro-1,4-benzothiazine-3-carboxylic acid 7 was performed in comparison with that of 1. In the case of 7, dibromide radical anion oxidation leads over a few microseconds (k = 2.1 x 10(9) M(-1) s(-1)) to a phenoxyl radical (lambda(max) 330 nm, epsilon = 6300 M(-1) cm(-1)) which within tens of milliseconds gives rise with second-order kinetics (2k = 2.7 x 10(7) M(-1) s(-1)) to a species exhibiting an absorption maximum at 540 nm (epsilon = 2200 M(-1) cm(-1)). This was formulated as the o-quinonimine 3 arising from disproportionation of the initial radical. The quinonimine chromophore is converted over hundreds of milliseconds (k = 6.0 s(-1)) to a broad maximum at around 330 nm interpreted as due to a 1,4-benzothiazine or a mixture of 1,4-benzothiazines, which as expected are unstable and subsequently decay over a few seconds (k = 0.5 s(-1)). Interestingly, the quinonimine is observed as a labile intermediate also in the alternative reaction route examined, involving cyclization of the o-quinone (lambda(max) 390 nm, epsilon = 6900 M(-1) cm(-1)) arising by disproportionation (2k = 1.7 x 10(8) M(-1) s(-1)) of an o-semiquinone (lambda(max) 320 nm, epsilon = 4700 M(-1) cm(-1)) directly generated by dibromide radical anion oxidation of 1. Structural formulation of the 540 nm species as an o-quinonimine was further supported by rapid scanning diode array spectrophotometric monitoring of the ferricyanide oxidation of a series of model dihydrobenzothiazines.  相似文献   

12.
A novel in situ product recovery (ISPR) approach for the (fully) integrated separation of L-phenylalanine (L-phe) from a 20 l fed-batch process with the recombinant L-tyrosine auxotrophic strain E. coli F-4/pF81 is presented. The strain was rationally constructed for the production of the aromatic amino acid. Glucose and tyrosine control is used. A reactive extraction system consisting of kerosene, the cation-selective carrier D2EHPA and sulphuric acid, all circulating in liquid-liquid centrifuges, is applied for the on-line L-phe separation from cell- and protein-free permeate. Permeate is drained off from the bioreactor bypass. Using the novel ISPR approach, a significantly extended product formation period at 0.25 mmol/(g*h) together with a reduced by-product formation and a 28% relative glucose/L-phe yield increase is observed. Thus, the ISPR approach is superior to the reference non-ISPR process and even offers extraction rates approximately three times higher than the published membrane-based process.  相似文献   

13.
Getoff N 《Radiation research》2000,154(6):692-696
The spectroscopic and kinetic characteristics of beta-carotene radical cation (beta-carotene(.+)) were studied by pulse radiolysis in aerated DMSO solution. The buildup of beta-carotene(.+) with k(1) = (4.8 +/- 0.2) x 10(8) dm(3) mol(-1) s(-1) [lambda(max) = 942 nm, epsilon = (1.6 +/- 0.1) x 10(4) dm(3) mol(-1) cm(-1)] results from an electron transfer from beta-carotene to DMSO(.+). The beta-carotene(.+) species decays exclusively by first-order reaction, k = (2.1 +/- 0.1) x 10(3) s(-1), probably by two processes: (1) at low substrate concentration by hydrolysis and (2) at high concentrations also by formation of dimer radical cation (beta-carotene)(2)(.+). Under the experimental conditions, a small additional beta-carotene triplet-state absorption ((3)beta-carotene) in the range of 525 to 660 nm was observed. This triplet absorption is quenched by oxygen (k = 7 x 10(4) s(-1)), resulting in singlet oxygen ((1)O(2)), whose reactions can also lead to additional formation of beta-carotene(.+).  相似文献   

14.
The adsorption processes and electrochemical behavior of 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA) adsorbed onto glassy carbon electrodes (GCE) have been investigated in aqueous 0.1M nitric acid (HNO(3)) electrolyte solutions using cyclic voltammetry (CV). Nitroaniline adsorbs onto GCE surfaces and upon potential cycling past -0.55 V is transformed into the arylhydroxylamine (ArHA), which exhibits a well-behaved pH dependent redox couple centered at 0.32 V (pH 1.5). This modified electrode can be readily used as an immobilization matrix to entrap proteins and enzymes. In our studies, myoglobin (Mb) was chosen as a model protein for investigation. A pair of well-defined reversible redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the Mb/arylhydroxylamine modified glassy carbon electrode (Mb/HAGCE) by direct electron transfer between the protein and the GCE. The formal potential (E(0')), the surface coverage (Gamma) and the electron transfer rate constant (k(s)) were calculated as -0.317 V, 4.15+/-0.5 x 10(-11)mol/cm(2) and 51+/-5s(-1), respectively. Dramatically enhanced biocatalytic activity was exemplified at the Mb/HAGCE for the reduction of hydrogen peroxide (H(2)O(2)), trichloroacetic acid (TCA) and oxygen (O(2)). The Mb/ArHA film was also characterized by UV-vis spectra, scanning electron microscope (SEM) indicating excellent stability and good biocompatibility for protein in the film. The applicability of the method to the determination of H(2)O(2) ( approximately 3%) in a commercial antiseptic solution and soft-contact lenses cleaning solutions were demonstrated. This new Mb/HAGCE exhibited rapid electrochemical response (with in 2s) with good stability in physiological condition.  相似文献   

15.
Mechanism of electroporative dye uptake by mouse B cells.   总被引:3,自引:0,他引:3       下载免费PDF全文
The color change of electroporated intact immunoglobulin G receptor (Fc gammaR-) mouse B cells (line IIA1.6) after direct electroporative transfer of the dye SERVA blue G (Mr 854) into the cell interior is shown to be dominantly due to diffusion of the dye after the electric field pulse. Hence the dye transport is described by Fick's first law, where, as a novelty, time-integrated flow coefficients are introduced. The chemical-kinetic analysis uses three different pore states (P) in the reaction cascade (C <==> P1 <==> P2 <==> P3), to model the sigmoid kinetics of pore formation as well as the biphasic pore resealing. The rate coefficient for pore formation k(p) is dependent on the external electric field strength E and pulse duration tE. At E = 2.1 kV cm(-1) and tE = 200 micros, k(p) = (2.4 +/- 0.2) x 10(3) s(-1) at T = 293 K; the respective (field-dependent) flow coefficient and permeability coefficient are k(f)0 = (1.0 +/- 0.1) x 10(-2) s(-1) and P0 = 2 cm s(-1), respectively. The maximum value of the fractional surface area of the dye-conductive pores is 0.035 +/- 0.003%, and the maximum pore number is Np = (1.5 +/- 0.1) x 10(5) per average cell. The diffusion coefficient for SERVA blue G, D = 10(-6) cm2 s(-1), is slightly smaller than that of free dye diffusion, indicating transient interaction of the dye with the pore lipids during translocation. The mean radii of the three pore states are r(P1) = 0.7 +/- 0.1 nm, r(P2) = 1.0 +/- 0.1 nm, and r(P3) = 1.2 +/- 0.1 nm, respectively. The resealing rate coefficients are k(-2) = (4.0 +/- 0.5) x 10(-2) s(-1) and k(-3) = (4.5 +/- 0.5) x 10)(-3) s(-1), independent of E. At zero field, the equilibrium constant of the pore states (P) relative to closed membrane states (C) is K(p)0 = [(P)]/[C] = 0.02 +/- 0.002, indicating 2.0 +/- 0.2% water associated with the lipid membrane. Finally, the results of SERVA blue G cell coloring and the new analytical framework may also serve as a guideline for the optimization of the electroporative delivery of drugs that are similar in structure to SERVA blue G, for instance, bleomycin, which has been used successfully in the new discipline of electrochemotherapy.  相似文献   

16.
When an industrial process is developed using the microbial transformation of a precursor into a desired chemical compound, high concentrations of substrate and product will be involved. These compounds may become toxic to the cells. In situ product removal (ISPR) may be carried out, using auxiliary phases such as extractants or adsorbents. Simultaneously, in situ substrate addition (ISSA) may be performed. It is shown that for uncharged substrates and products, the aqueous solubilities of substrate and product can be used to predict if ISPR might be required. When a particular auxiliary phase is selected and the distribution coefficients of substrate and product are known, it is possible to estimate a priori if this auxiliary phase might be good enough and how much of it might be needed for an efficient (fed-)batch biotransformation process. For biotransformation products of intermediate polarity (aqueous solubility of about 1-10 g/L) there seems to be a lack of extractants and adsorbents with the capacity to raise the product concentrations to commercially more interesting levels.  相似文献   

17.
Using pulse radiolysis and laser flash photolysis, we have investigated the reactions of the deleterious species, e(-)(aq), HO&z.rad;, O(2)(*)(-) and O(2)((1)Delta(g)) with 10 water-soluble cyclopropyl-fused C(60) derivatives including a mono-adduct dendro[60]fullerene (d) and C(60) derivatives based on C(60)[C(COOH)(2)](n=2-6), some of which are known to be neuroprotective in vivo. The rate constants for reactions of e(-)(aq) and HO&z.rad; lie in the range 0.5-3.3 x 10(10) M(-1) s(-1). The d and bis-adduct monoanion radicals display sharp absorption peaks around 1000 nm (epsilon = 7 000-11 500 M(-1) cm(-1)); the anions of the tris-, tetra-, and penta-adduct derivatives have broader, weaker absorptions. The monohydroxylated radicals have their most intense absorption maxima around 390-440 nm (epsilon = 1000-3000 M(-1) cm(-1)). The anion and hydroxylated radical absorption spectra display a blue-shift as the number of addends increases. The radical anions react with oxygen (k approximately 10(7)-10(9) M(-1) s(-1)). The reaction of O(2)(*)(-) with the C(60) derivatives does not occur via an electron transfer. The rate constants for singlet oxygen reaction with the dendrofullerene and eee-derivative in D(2)O at pH 7.4 are k approximately 7 x 10(7) and approximately 2 x 10(7) M(-1) s(-1) respectively, in contrast to approximately 1.2 x 10(5) M(-1) s(-1) for the reaction with C(60) in C(6)D(6). The large acceleration of the rates for electron reduction and singlet oxygen reactions in water is due to a solvophobic process.  相似文献   

18.
The swelling of a dextran gel, Sephadex G-75, was observed in an aqueous environment at room temperature by a noninvasive technique that uses light microscopy coupled to an image analysis system via a video camera. The rate of swelling was found to follow the Tanaka and Fillmore theory, from which the overall gel diffusion coefficient was estimated as 6.3 x 10(-7) cm2/s. In addition to giving a quantitative measure of gel swelling that could be useful in the mechanical design of liquid chromatography columns, this approach provides data on wet particle size and particle size range, which is needed for the modeling of diffusional and mass transfer effects in size-exclusion chromatography. In this context, key observations are that the gel particles are nearly spherical with an elliptical shape factor of 0.98 (perfect sphere = 1) and that there is little difference between sizes of particles obtained in water, 50 mM Tris-glycine buffer (pH 10.2), and buffer containing 1 mg/mL protein. The diameter of the dry material ranged from 20 to 100 microns, while the hydrated particles had diameters of 40-350 microns. The rate of swelling is rapid, with 50% swelling occurring in about 10 s and swelling to 99% of the final wet particle size being obtained in less than 90 s.  相似文献   

19.
The conformational transition of disulfides in bovine serum albumin (BSA) induced by electrochemical redox reaction of disulfides were monitored by in-situ circular dichroism (CD) spectroelectrochemistry, with a long optical path thin layer cell and analyzed by a singular value decomposition least square (SVDLS) method. Electrochemical reduction of disulfides drives the left-handed conformation of disulfides changed into the right-handed. At open circuit, eight of the 17 disulfides were of left-handed conformation. Four of the 17 disulfides took part in the electrochemical reduction with an EC mechanism. Only one-fourth of the reduced disulfides returned to left-handed conformation in the re-oxidation process. Some parameters of the electrochemical reduction process, i.e. the number of electrons transferred and electron transfer coefficient, n = 8, alpha n = 0.15, apparent formal potential, E1(0') = -0.65(+/-0.01) V, standard heterogeneous electron transfer rate constant, k1(0) = (2.84 +/- 0.14) x 10(-5) cm s(-1) and chemical reaction equilibrium constant, Kc = (5.13 +/- 0.12) x 10(-2), were also obtained by double logarithmic analysis based on the near-UV absorption spectra with applied potentials.  相似文献   

20.
Dai Z  Xiao Y  Yu X  Mai Z  Zhao X  Zou X 《Biosensors & bioelectronics》2009,24(6):1629-1634
The direct electron transfer of myoglobin (Mb) was realized by immobilizing Mb onto ionic liquid (1-butyl-3-methyl imidazolium tetrafluoraborate, [bmim][BF(4)])-clay composite film modified glassy carbon electrode. A pair of well-defined redox peaks of Mb with a formal potential (E(o)') of -0.297 V (vs. Ag/AgCl) was observed in 0.1M phosphate buffer solution (pH 6.0). The ionic liquid-clay composite film showed good biocompatibility and an obvious promotion capability for the direct electron transfer between Mb and electrode. The electron transfer rate constant (k(s)) of Mb was calculated to be (3.58+/-0.12)s(-1). UV-vis spectrum suggested that Mb retained its native conformation in the ionic liquid-clay system. Basal plane spacing of clay obtained by X-ray diffraction (XRD) indicated that there was an intercalation-exfoliation-restacking process, in ionic liquid and clay during the drying process of the modification, and the ionic liquid played the key role for promotion of the direct electron transfer between Mb and the ionic liquid-clay composite film modified electrode. The biocatalytic activity of Mb in the composite film was exemplified by the reduction of hydrogen peroxide. Under the optimal conditions, the reduction peak currents of Mb increased linearly with the concentration of H(2)O(2) in the range of 3.90 x 10(-6) to 2.59 x 10(-4)M, with a detection limit of 7.33 x 10(-7)M. The kinetic parameter I(max) and the apparent Michaelis constant (K(m)) for the electrocatalytic reactions were 3.87 x 10(-8)A and 17.6 microM, respectively. The proposed method would be valuable for the construction of a new third-generation H(2)O(2) sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号