首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-term high-density cultivation of the hybridoma 2c3.1 was successfully carried out in a repeated fed-batch mode using high-density media that were constructed to meet in vitro cell growth limitations. The high-density culture was possible in a range of 0.5 approximately 1.0 x 10(7) cells/mL in MBRI 40-02 medium for over 2500 h by the repeated supplementation of the most fortified medium, MBRI 40-03, and consequently, distinct enhancement of MAb production was achieved. MAb concentrations were maintained around 1 g/L for about 1000 h of the process and the maximum MAb concentration was around 1.56 g/L. The result supported strongly the fact that the nutritional fortification was the most critical factor for high-density cell culture in vitro. The mean chromosome number of the hybridoma 2c3.1 was maintained stably for about 1500 h, whereas gradual loss of the MAb activity was apparent during the long-term cultivation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
The development of processes to produce biopharmaceuticals industrially is still largely empirical and relies on optimizing both medium formulation and cell line in a product-specific manner. Current small-scale (well plate-based) process development methods cannot provide sufficient sample volume for analysis, to obtain information on nutrient utilization which can be problematic when processes are scaled to industrial fermenters. We envision a platform where essential metabolites can be monitored non-invasively and in real time in an ultra-low volume assay in order to provide additional information on cellular metabolism in high throughput screens. Towards this end, we have developed a model system of Chinese Hamster Ovary cells stably expressing protein-based biosensors for glucose and glutamine. Herein, we demonstrate that these can accurately reflect changing intracellular metabolite concentrations in vivo during batch and fed-batch culture of CHO cells. The ability to monitor intracellular depletion of essential nutrients in high throughput will allow rapid development of improved bioprocesses.  相似文献   

3.
Alteration of mammalian cell metabolism by dynamic nutrient feeding   总被引:3,自引:0,他引:3  
Zhou W  Rehm J  Europa A  Hu WS 《Cytotechnology》1997,24(2):99-108
The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nutrient concentrate were adjusted stoichiometrically to provide balanced nutrient conditions for cell growth. Through on-line control of the feeding rate of the nutrient concentrate, both glucose and glutamine concentrations were maintained at low levels of 0.5 and 0.2 mM respectively during the growth stage. The concentrations of the other essential amino acids were also maintained without large fluctuations. The cell metabolism was altered from that observed in batch cultures resulting in a significant reduction of lactate, ammonia and alanine production. Compared to a previously reported fed-batch culture in which only glucose was maintained at a low level and only a reduced lactate production was observed, this culture has also reduced the production of other metabolites, such as ammonium and alanine. As a result, a high viable cell concentration of more than 1.0 × 107 cells/mL was achieved and sustained over an extended period. The results demonstrate an efficient nutrient feeding strategy for controlling cell metabolism to achieve and sustain a high viable cell concentration in fed-batch mammalian cell cultures in order to enhance the productivity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
基于Sf21昆虫细胞在悬浮培养过程中所表现出的生长代谢特征,提出以培养液中残糖浓度作为控制参数,并利用限制性基质(葡萄糖和蛋白水解物)的间歇补加技术调控细胞生长的方案。实际控制表明:与批培养相比,Sf21细胞在两种具代表性的昆虫细胞培养基(IPL-41和TC-100)中的生长期和稳定期都得到了有效的延长。TC-100培养液中最高细胞培养密度由3.0×106 cells/mL提高到6.5×106 cells/mL;IPL41培养液中最高细胞培养密度则由7.05×106 cells/mL提高到9.0×106cells/mL。由于限制性基质的间歇补加技术是利用较确定的营养成分来代替复杂昂贵的补料培养基,因此更适合于昆虫细胞的大规模高密度培养。  相似文献   

5.
A series of high-density media for mammalian cell culture were developed by step-fortifications of most nutrient components in RPMI-1640 medium. Each medium constituting the series was constructed to meet in vitro cell growth limitations. Four different cell lines were cultivated in the media series, and their growth characteristics were observed. Maximum cell densities varied in the range of 0.4 to 1.3 x 10(7) cells/mL, depending on cell lines. Cell growth responses to each of the media series were analyzed in terms of cell density and cell mass. Step increases of cell mass in the range of 1.3 to 3.7 g/L were observed according to the step-fortifications of nutrients. Also, the characteristics of each cell line were compared in terms of metabolic yields and specific productions of lactic acid and ammonium ion. The effect of step-fortifications of nutrients on the production of monoclonal antibody was also examined. Apparent differences in metabolic characteristics among cell lines were observed. Experimental results suggested that the different cell sizes and metabolic characteristics of each cell line resulted in cell-line-specific responses to the step-fortifications. The significant influence of nutritional fortifications on high-density culture of mammalian cells was evaluated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
Mammalian cells have the ability to proliferate under different nutrient environments by utilizing different combinations of the nutrients, especially glucose and the amino acids. Under the conditions often used in in vitro cultivation, the cells consume glucose and amino acids in great excess of what is needed for making up biomass and products. They also produce large amounts of metabolites with lactate, ammonia, and some non-essential amino acids such as alanine as the most dominant ones. By controlling glucose and glutamine at low levels, cellular metabolism can be altered and can result in reduced glucose and glutamine consumption as well as in reduced metabolite formation. Using a fed-batch reactor to manipulate glucose at a low level (as compared to a typical batch culture), cell metabolism was altered to a state with substantially reduced lactate production. The culture was then switched to a continuous mode and allowed to reach a steady-state. At this steady-state, the concentrations of cells and antibody were substantially higher than a control culture that was initiated from a batch culture without first altering cellular metabolism. The lactate and other metabolite concentrations were also substantially reduced as compared to the control culture. This newly observed steady-state was achieved at the same dilution rate and feed medium as the control culture. The paths leading to the two steady-states, however, were different. These results demonstrate steady-state multiplicity. At this new steady-state, not only was glucose metabolism altered, but the metabolism of amino acids was altered as well. The amino acid metabolism in the new steady-state was more balanced, and the excretion of non-essential amino acids and ammonia was substantially lower. This approach of reaching a more desirable steady-state with higher concentrations of cells and product opens a new avenue for high-density- and high-productivity-cell culture.  相似文献   

7.
基于r21昆虫细胞在浮过程中所表现出的生长代谢特征,提出以培养液中残糖浓度作为控制参数,并利用限制性基质(葡萄糖和蛋白水解物)的间歇补加技术调控细胞生长的方案。实际控制表明:与批培养相比,S1f21细胞在两种具代表性的昆虫水解物)的间歇补加调控细胞生长的方案。实际控制表明:与批培养相比,Sf21细胞在两种具代表性的昆虫细胞培养基(IPL-41和TC-100)中的生长期和稳定期部都到有效的延长。TC  相似文献   

8.
The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.  相似文献   

9.
Continuous culture is frequently used in the cultivation of mammalian cells for the manufacturing of recombinant protein pharmaceuticals. In such operations a large volume of medium is turned over each day, especially in the case where cell recycle, or perfusion cultivation, is practiced. In principle, the volumetric throughput of medium can be reduced by using a more concentrated feed while maintaining the same nutrient provision rate. Overall, the medium components are divided into two categories: ‘consumable nutrients' and ‘unconsumable inorganic bulk salts’. In such fortified medium, the concentrations of consumable nutrients, but not bulk salts, are increased. With a stoichiometrically-balanced medium, the large amount of nutrients fed into the culture is largely consumed by cells to give rise to residual concentrations of these nutrients in their optimal range. However, unless care is taken to initiate the continuous culture, overshoot of nutrients may occur during the transient period. The high nutrient concentration during overshoot may be inhibitory by itself, or the resulting high osmolality may retard the growth. Using a mathematical model that incorporates the growth inhibitory effect of high osmolality we demonstrate such a potentially catastrophic effect of nutrient and osmolality overshoot by simulation. To avoid overshoot a controlled nutrient feeding scheme should be devised at the initiation of continuous culture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Genome‐scale modeling of mouse hybridoma cells producing monoclonal antibodies (mAb) was performed to elucidate their physiological and metabolic states during fed‐batch cell culture. Initially, feed media nutrients were monitored to identify key components among carbon sources and amino acids with significant impact on the desired outcome, for example, cell growth and antibody production. The monitored profiles indicated rapid assimilation of glucose and glutamine during the exponential growth phase. Significant increase in mAb concentration was also observed when glutamine concentration was controlled at 0.5 mM as a feeding strategy. Based on the reconstructed genome‐scale metabolic network of mouse hybridoma cells and fed‐batch profiles, flux analysis was then implemented to investigate the cellular behavior and changes in internal fluxes during the cell culture. The simulated profile of the cell growth was consistent with experimentally measured specific growth rate. The in silico simulation results indicated (i) predominant utilization of glycolytic pathway for ATP production, (ii) importance of pyruvate node in metabolic shifting, and (iii) characteristic pattern in lactate to glucose ratio during the exponential phase. In future, experimental and in silico analyses can serve as a promising approach to identifying optimal feeding strategies and potential cell engineering targets as well as facilitate media optimization for the enhanced production of mAb or recombinant proteins in mammalian cells. Biotechnol. Bioeng. 2009;102: 1494–1504. © 2008 Wiley Periodicals, Inc.  相似文献   

11.
Serum free fermentation procedures of cell cultures have got a wide application in production of biochemicals. But, cells cultured in serum free media in general are more sensitive to changes in culture condition, especially to nutrient limitation. There are no substances from serum which can support the cells when conditions are changing. In this study special attention is directed to amino acid utilization of mouse hybridoma in batch, chemostat and perfusion fermentations. Detailed data are presented which show the considerable difference of amino acid consumption rates in different fermentation modes. Already, in batch mode there are differences of the two investigated mouse hybridoma cell lines, although they are derived from the same myeloma line. In chemostat running at a dilution rate representing maximal growth rate most of the consumption rates are significant higher than in batch. On the other hand, in perfusion mode the rates are lower than in batch. This indicates clearly the different conditions of the fermentation modes. Therefore, it is necessary to develop serum free processes under the desired production conditions. An accurate analysis of the process is strongly recommended.  相似文献   

12.
13.
An investigation was made to study the processes of fed-batch cultures of a hybridoma cell line in chemically defined protein-free media. First of all, a strong growth-associated pattern was correlated between the production of MAb and growth of cells through the kinetic studies of batch cultures, suggesting the potential effectiveness of extending the duration of exponential growth in the improvement of MAb titers. Second, compositions of amino acids in the feeding solution were balanced stepwisely according to their stoichiometrical correlations with glucose uptake in batch and fed-batch cultures. Moreover, a limiting factor screening revealed the constitutive nature of Ca2+ and Mg2+ for cell growth, and the importance of their feeding in fed-batch cultures. Finally, a fed-batch process was executed with a glucose uptake coupled feeding of balanced amino acids together with groups of nutrients and a feeding of CaCl2 and MgCl2 concentrate. The duration of exponential cell growth was extended from 70 h in batch culture and 98 h in fed-batch culture without Ca2+/Mg2+ feeding to 117 h with Ca2+/Mg2+ feeding. As a result of the prolonged exponential cell growth, the viable and total cell densities reached 7.04 × 106 and 9.12 × 106 cells ml−1, respectively. The maximal MAb concentration achieved was increased to approximately eight times of that in serum supplemented batch culture.  相似文献   

14.
Cell culture longevity in fed-batch culture of hybridomas is often limited by elevated medium osmolality caused by repeated nutrient feeding. Shotwise feeding of 10x Dulbecco's modified Eagle's medium (DMEM) concentrates elevated the osmolality of medium up to 540 mOsm/kg at the end of fed-batch culture of S3H5/gamma2bA2 hybridoma which is known to be lethal to most hybridomas. S3H5/gamma2bA2 hybridoma has been shown to grow without significant growth depression at 219 mOsm/kg in DMEM supplemented with 10% fetal bovine serum. To improve culture longevity in fed-batch cultures of S3H5/gamma2bA2 hybridoma, a hypoosmolar medium (223 mOsm/kg) was used as an initial basal medium. The use of hypoosmolar medium delayed the onset of severe cell death resulting from elevated osmolality and allowed one more addition of 10x DMEM concentrates to the culture. As a result, a final antibody concentration obtained was 121.5 microg/mL which is approximately 1.5-fold higher compared to fed-batch culture using a standard medium (335 mOsm/kg). When compared to batch culture, a more than 5-fold increase in the final antibody concentration was achieved. Taken together, the use of hypoosmolar medium as an initial medium in fed-batch culture improved culture longevity of S3H5/gamma2bA2 hybridoma, resulting in a substantial increase in the final antibody concentration.  相似文献   

15.
Summary Fluorescence measurement of viable hybridoma cell cultures provides a convenient method for monitoring the progress of a batch culture. It is shown that cell concentration changes as low as 35,000 cells/ml during initial stages of growth can be measured reliably. This sensitivity, however, decreases to 2 × 106 cells/ml at cell concentration greater than 2 × 106 cells/ml. The culture fluorescence of hybridoma culture is a characteristic property of the cell and the medium used. Consequently, processes in which the medium composition and cell lines are invariant, a direct on-line estimate of viable cell count can be made using the method investigated in this paper.  相似文献   

16.
Reovirus serotype 3 Dearing (T3D) has shown potential as a novel cancer therapy. To support the increasing demand for reovirus, a two-stage perfusion mode scheme is proposed for cell growth and reovirus production. Mouse L-929 cells were used as the host for reovirus infection due to their ability to grow well in suspension culture. Several L-929 cell growth and reovirus infection characteristics were investigated and optimized in spinner flask batch cultures. For the growth of L-929 cells, a balanced nutrient-fortification of SMEM medium increased the maximum cell density by 30%, compared to normal SMEM; however, ammonia and lactate accumulations were found to inhibit further cell growth. For the production of reovirus, approximately 90% increase in viral yield resulted when the infection temperature was reduced from 37 to 33 degrees C. Infectious reovirus particles were shown to be stable in conditioned medium at 37 and 33 degrees C. The final virus titer was dependent on the multiplicity of infection (MOI) and the host cell density at the time of infection. A combination of an MOI of 0.1 pfu/cell and an initial host cell density of 1.0 x 10(6) cells/mL in fortified medium resulted in a maximum virus titer of (4.59 +/- 0.16) x 10(9) pfu/mL and a specific yield of (2.34 +/- 0.08) x 10(3) pfu/cell. At an optimal harvest time of the infection process, 99% of the virus was associated with the cellular debris. Finally, the presence of 5.0 mM ammonia in the culture medium was shown to seriously inhibit the reovirus yield, whereas lactate concentrations up to 20 mM had no effect.  相似文献   

17.
In animal cell cultivation, cell density and product concentration are often low due to the accumulation of toxic end-products such as ammonia and lactate and/or the depletion of essential nutrients. A hybridoma cell line (CRL-1606) was cultivated in T-flasks using a newly devised medium feeding strategy. The goals were to decrease ammonia and lactate formation by the design of an initial medium which would provide a starting environment to achieve optimal cell growth. This was followed by using a stoichiometric equation governing animal cell growth and then designing a supplemental medium for feeding strategy used to control the nutritional environment. The relationship between the stoichiometric demands for glutamine and nonessential amino acids was also studied. Through stoichiometric feeding, nutrient concentrations were controlled reasonably well. Consequently, the specific production rate of lactate was decreased by fourfold compared with conventional fed-batch culture and by 26-fold compared with conventional batch culture. The specific production rate of ammonia was decreased by tenfold compared with conventional fed-batch culture and by 50-fold compared with conventional batch culture. Most importantly, total cell density and monoclonal antibody concentration were increased by five- and tenfold respectively, compared with conventional batch culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
A hollow fiber cartridge may be used in an extraneous recycle loop to facilitate perfusion operation of a stirred tank bioreactor. Retention of cells while removing waste products and replenishment with fresh nutrients allows higher than normal cell densities obtained in batch or continuous culture systems. This system successfully propagated HeLa cells to over 11 million viable cells per milliliter. Much higher perfusion rates (up to 4 vessel volumes per day) were necessary for high density culture of HeLa cells compared to BHK or a hybridoma cell line because of a much higher specific cellular metabolic rate. Cell specific glucose consumption rate, lactate production and ammonia production rates are several times higher for HeLa cells. Reproducible high cell densities and viabilities can be repeatedly obtained after harvest and dilution of a HeLa cell culture by partial drainage and reconstitution in the bioreactor.  相似文献   

19.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

20.
Mouse-human hybridoma 4H11 cells producing anti-Pseudomonas sp. monoclonal antibody (IgA) grew in a serum-free medium supplemented with insulin, transferrin, ethanolamine, and selenite (ITES). The hybridoma could be applied to high-density culture in a serum-free medium supplemented with ITES, 0.5% BSA, egg yolk VLDL, and artificial blood FC-43 in a culture vessel equipped with hollow-fiber modules for medium exchange. Total cell density reached 1.1 x 10(7) cells/mL (viable cell density was 7.6 x 10(6) cells/mL), and the IgA productivity was around 20 mug/10(6) cells/day in the serum-free medium, which corresponded to the levels in serum-supplemented medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号