首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth and metabolism of Saccharomyces cerevisiae was studied in steady-state chemostat cultures under conditions of scarce oxygen and excess glucose. The specific ethanol productivity and specific glucose uptake rate were stimulated by 50% within a narrow range of air/nitrogen mixtures to the fermentor. Fermentation was inhibited at slightly higher and lower air/nitrogen ratios, confirming similar results by previous investigators. This stimulation could not be caused by obvious mechanisms, such as the Pasteur or Crabtree effects. Since this maximum in the fermentation rate occurred in a steady-state chemostat and at a constant dilution rate, the ATP yield of the culture necessarily attained a minimum. Thus, changes in the energetic efficiency of growth or the degree of wasting of ATP were surmised. The steady-state biomass concentration at various oxygenation rates exhibited hysteresis phenomena. Ignition and extinction of the biomass concentration occurred as critical oxygen feed rates were passed. The hysteresis was prevented by adding yeast extract to or reducing the antifoam concentration in the medium. These medium alterations had the simultaneous effect of stimulating the fermentation rate, suggesting that ATP has a critical role in dictating the biomass concentration in micro-aerobic culture. Silicone polymer antifoam was found to stimulate glycerol production at the expense of ethanol production, having consequences for the energy generation and the biomass concentration of the culture.  相似文献   

2.
Thermoanaerobacter thermosaccharolyticum HG-8 was grown in continuous culture to characterize growth limitation at high feed substrate and product concentrations. Continuous fermentation of 50 and 73 g/L xylose at a dilution rate based on the feed flow, D(f), of 0.053 h(-)(1) and with the pH controlled at 7.0 by addition of KOH resulted in steady state utilization of >99% of the xylose fed and production of ethanol and acetic acid at a mass ratio of about 2:1. Continuous cultures of T. thermosaccharolyticum growing at D(f) = 0.053 h(-)(1) achieved complete utilization of 75 g/L xylose in the presence of 19.1 g/L K(+) (0.49 M) and an ethanol concentration of 22.4 g/L ethanol. When the feed to a culture initially at steady state with a 75 g/L xylose feed and D(f) = 0.053 h(-)(1) was increased to 87.5 g/L xylose, limitation of growth and xylose utilization was observed. This limitation was not relieved by repeating this feed upshift experiment in the presence of increased nutrient levels and was not reproduced by addition of ethanol to a steady-state culture fed with 75 g/L xylose. By contrast, addition of KCl to a steady-state culture fed with 75 g/L xylose reproduced the K(+) concentration, limitation of growth and xylose utilization, and product concentration profiles observed in the feed upshift experiment. The maximum concentration at which growth of batch cultures was observed was 0.43 M for KCl, NaCl, and equimolar mixtures of these salts, suggesting that the observed limitation is not ion-specific. These data support the interpretation that inhibition salt accumulation resulting from addition of KOH for pH control is the limiting factor manifested in the feed upshift experiment and that both nutrient limitation and ethanol inhibition played little or no role as limiting factors. More generally, salt inhibition would appear to be a possible explanation for the discrepancy between the tolerance to added ethanol and the maximum concentration of produced ethanol reported in the literature for fermentation studies involving thermophilic bacteria.  相似文献   

3.
Xylitol formation by Candida boidinii in oxygen limited chemostat culture   总被引:2,自引:0,他引:2  
Summary Production of xylitol by Candida boidinii NRRL Y-17213 occurs under conditions of an oxygen limitation. The extent to which substrate is converted to xylitol and its coproducts (ethanol, other polyols, acetic acid), and the relative flow rates of substrate to energetic and biosynthetic pathways is controlled by the degree of oxygen limitation.With decrease in oxygen concentration in the inlet gas, for a constant dilution rate of 0.05 1/h. the specific oxygen uptake rate decreased from 1.30 to 0.36 mmol/gh Xylitol was not produced at specific oxygen uptake rates above 0.91 mmol/gh. Upon shift to lower oxygen rates, specific xylitol production rate increased more rapidly than specific ethanol production rate:Nomenclature D dilution rate (1/h) - DOT dissolved oxygen tension (%) - mo2 maintenance coefficient (mmol O2/g cell mass h) - qo2 specific oxygen uptake rate (mmol O2/g cell mass h) - qs specific xylose uptake rate (g xylose/g cell mass h) or (mmol xylose/g cell mass h) - qx specific xylitol production rate (g xylitol/ g cell mass h) or (mmol xylitol/ g cell mass h) - qe specific ethanol production rate (g ethanol/ g cell mass h) or (mmol ethanol/ g cell mass h) - qCO2 specific carbon dioxide production rate (mmol CO2/g cell mass h) - S xylose concentration (g/1) - Ycm/s cell mass yield coefficient, (g cell mass/mmol xylose) or (g cell mass/ g xylose consumed) - Ycm/O2 cell mass yield coefficient, (g cell mass/mmol O2) - YX/S xylitol yield coefficient (g xylitol/g xylose consumed) - Yx/O2 xylitol yield coefficient (g xylitol/mmol O2) - Ye/s ethanol yield coefficient (g ethanol/g xylose consumed) - OUR oxygen uptake rate (mmol O2/1h) - specific growth rate (1/h)  相似文献   

4.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

5.
Summary The effect of Mg+2 on Pichia stipitis growth and ethanol production was studied under condition of constant oxygen uptake rate (OUR) . Biomass/xylose and biomass/Mg+2 yields increased with Mg+2 concentration with a maximum value at Mg+2 4mM, ethanol being the main product obtained. At low Mg+2 levels (ImM) 49 % of carbon flux to ethanol was redirected to xylitol production, accomplished through NADH intracellular accumulation.  相似文献   

6.
The growth parameters of Leptothrix discophora SP-6 were quantified on the basis of the steady-state concentrations and utilization rates of pyruvate, dissolved oxygen, and concentration of microorganisms in a chemostat operated at 25 degrees C, pH 7.2, and an agitation rate of 350 rpm. The results showed that the microbial growth was limited by both pyruvate and dissolved oxygen. A combined growth kinetics model using Monod growth kinetics for pyruvate and Tessier growth kinetics for oxygen showed the best correlation with the experimental data when analyzed using an interactive multiple substrate model. The growth kinetics parameters and the respective confidence limits, estimated using the Monte Carlo simulation, were mu(max) = 0.576 +/- 0.021 h(-1), K(sMp) = 38.81 +/- 4.24 mg L(-1), K(sTo) = 0.39 +/- 0.04 mg L(-1), Y(X/p) = 0.150 (mg microorganism mg(-1) pyruvate), Y(X/o) = 1.24 (mg microorganism mg(-1) oxygen), the maintenance factors for pyruvate and oxygen were m(p) = 0.129 (mg pyruvate consumed mg(-1) microorganism h(-1)) and m(o) = 0.076 (mg oxygen consumed mg(-1) microorganism h(-1)), respectively.  相似文献   

7.
Summary The ability of C. guilliermondii and C. parapsilosis to ferment xylose to xylitol was evaluated under different oxygen transfer rates in order to enhance the xylitol yield. In C. guilliermondii, a maximal xylitol yield of 0.66 g/g was obtained when oxygen transfer rate was 2.2 mmol/l.h. Optimal conditions to produce xylitol by C. parapsilosis (0.75 g/g) arose from cultures at pH 4.75 with 0.4 mmoles of oxygen/l.h. The response of the yeasts to anaerobic conditions has shown that oxygen was required for xylose metabolism.Nomenclature max maximum specific growth rate (per hour) - qSmax maximum specific rate of xylose consumption (g xylose per g dry biomass per hour) - qpmax maximum specific productivity of xylitol (g xylitol per g dry biomass per hour) - Qp average volumetric productivity of xylitol (g xylitol per liter per hour) - YP/S xylitol yield (g xylitol per g substrate utilized) - YP'/S glycerol yield (g glycerol per g substrate utilized) - YX/S biomass yield (g dry biomass per g substrate utilized)  相似文献   

8.
Physiological responses during growth on xylose and the xylose-degrading pathway of Candida tropicalis and Candida guilliermondii yeasts were investigated. The responses to a linearly decreasing oxygen transfer rate and a simultaneously increasing dilution rate were compared. C. guilliermondii produced acetate but no ethanol, and C. tropicalis ethanol but no acetate under oxygen limitation. Both strains produced glycerol. The D-xylose reductase of C. guilliermondii is exclusively NADPH-dependent. and acetate production regenerated NADPH. The xylose'reductase of C. tropicalis has a dual dependency for both NADH and NADPH. It regenerated NAD by producing ethanol. Both strains regenerated NAD by producing glycerol. The effect of intracellular NADH accumulation to xylose uptake and metabolite production was studied by using formate as a cosubstrate. Formate feeding in C. tropicalis triggered the accumulation of glycerol, ethanol and xylitol. Consequently, the specific xylose consumption increased 28% during formate feeding, from 477 to 609 C-mmol/C-mol cell dry-weight (CDW)/h. In C. guilliermondii cultures. formate feeding resulted only in glycerol accumulation. The specific xylose consumption increased 6%, from 301 to 319 C-mmol/C-mol CDW/h, until glycerol started to accumulate.  相似文献   

9.
Relevant production of xylitol by Debaryomyces hansenii requires semiaerobic conditions since in aerobic conditions the accumulated reduced adenine dinucleotide coenzyme is fully reoxidized leading to the conversion of xylitol into xylulose. For oxygen transfer coefficient values from 0.24 to 1.88 min-1, in shake flasks experiments, biomass formation increased proportionally to the aeration rate as shown in the oxygen transfer coefficient and xylose concentration isoresponse contours. The metabolic products under study, xylitol and ethanol were mainly growth associated. However, for oxygen transfer coefficient above 0.5 min-1 higher initial xylose concentration stimulated the rate of production of xylitol. This fact was less evident for ethanol production. The direct relationship between increased biomass and products formation rate, indicated that the experimental domain in respect to the aeration rate was below the threshold level before the decreasing in metabolic production rates reported in literature for xylose-fermenting yeasts. The fact that ethanol was produced, albeit in low levels, throughout the experimental design indicated that the semiaerobic conditions were always attained. Debaryomyces hansenii showed to be an important xylitol producer exhibiting a xylitol/ethanol ratio above four and a carbon conversion of 54% for xylitol.Abbreviations KLa oxygen transfer coefficient - DO(T) dissolved oxygen (tension) - OUR oxygen uptake rate - NAD(H) oxidised (reduced) nicotinamide adenine dinucleotide - NADP(H) oxidised (reduced) nicotinamide adenine dinucleotide phosphate - CRC catabolic reduction charge - C oxygen concentration in the culture medium - C* oxygen concentration at saturation conditions - Yi response from experiment i - parameters of the polynomial model - x experimental factor level (coded units) - R2 coefficient of multiple determination - t time  相似文献   

10.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

11.
A K270R mutation of xylose reductase (XR) was constructed by site-direct mutagenesis. Fermentation results of the F106X and F106KR strains, which carried wild type XR and K270R respectively, were compared using different substrate concentrations (from 55 to 220 g/L). After 72 h, F106X produced less ethanol than xylitol, while F106KR produced ethanol at a constant yield of 0.36 g/g for all xylose concentrations. The xylose consumption rate and ethanol productivity increased with increasing xylose concentrations in F106KR strain. In particular, F106KR produced 77.6g/L ethanol from 220 g/L xylose and converted 100 g/L glucose and 100g/L xylose into 89.0 g/L ethanol in 72h, but the corresponding values of F106X strain are 7.5 and 65.8 g/L. The ethanol yield of F106KR from glucose and xylose was 0.42 g/g, which was 82.3% of the theoretical yield. These results suggest that the F106KR strain is an excellent producer of ethanol from xylose.  相似文献   

12.
The effect of hydrogen acceptors on the kinetic parameters of D-xylose fermentation under anaerobic conditions was studied in a transient culture of immobilized Pachysolen tannophilus cells. Addition of oxygen to a steady-state culture resulted in a rapid increase (up to fivefold) in the rates of ethanol production and D-xylose uptake, but the rate of xylitol production was unaffected. Furthermore, the molar ethanol yield increased from 0.97 to 1.43 in the presence of oxygen. The moles of ethanol produced per moles of oxygen utilized were considerably greater than would be predicted from the stoichiometry of D-xylose fermentation, which suggests that the organism required oxygen for other functions in addition to its role as a hydrogen acceptor in D-xylose metabolism. When the artificial hydrogen acceptors acetone, acetaldehyde, and acetoin were added to the culture, the rate of ethanol production increased while the xylitol production rate decreased but the rate of xylose uptake was unaffected. The molar ethanol yields increased from 1.03 to 1.63, 1.43, and 1.24 upon addition of acetaldehyde, acetone, and acetoin, respectively, at the expense of the molar xylitol yields. The hydrogen acceptors sodium acetate, methylene blue, benzyl viologen, phenazine methosulfate, indigo carmine, and tetrazolium chloride had no effect on ethanol production.  相似文献   

13.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h(-1) g (dry weight) of cells(-1) (0.24 to 0.30 g h(-1) g [dry weight] of cells(-1)) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h(-1). The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h(-1) g (dry weight) of cells(-1) when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h(-1) g (dry weight) of cells(-1) when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.  相似文献   

14.
The effect of oxygenation on xylitol production by the yeast Debaryomyces hansenii has been investigated in this work using the liquors from corncob hydrolysis as the fermentation medium. The concentrations of consumed substrates (glucose, xylose, arabinose, acetate and oxygen) and formed products (xylitol, arabitol, ethanol, biomass and carbon dioxide) have been used, together with those previously obtained varying the hydrolysis technique, the level of adaptation of the microorganism, the sterilization procedure and the initial substrate and biomass concentrations, in carbon material balances to evaluate the percentages of xylose consumed by the yeast for the reduction to xylitol, alcohol fermentation, respiration and cell growth. The highest xylitol concentration (71 g/L) and volumetric productivity (1.5 g/L.h) were obtained semiaerobically using detoxified hydrolyzate produced by autohydrolysis-posthydrolysis, at starting levels of xylose (S(0)) and biomass (X(0)) of about 100 g/L and 12 g(DM)/L, respectively. No less than 80% xylose was addressed to xylitol production under these conditions. The experimental data collected in this work at variable oxygen levels allowed estimating a P/O ratio of 1.16 mol(ATP)/mol(O). The overall ATP requirements for biomass production and maintenance demonstrated to remarkably increase with X(0) and for S(0) >or= 130 g/L and to reach minimum values (1.9-2.1 mol(ATP)/C-mol(DM)) just under semiaerobic conditions favoring xylitol accumulation.  相似文献   

15.
This work presents a multi-route, non-structural kinetic model for interpretation of ethanol fermentation of lactose using a recombinant flocculent Saccharomyces cerevisiae strain expressing both the LAC4 (coding for beta-galactosidase) and LAC12 (coding for lactose permease) genes of Kluyveromyces lactis. In this model, the values of different metabolic pathways are calculated applying a modified Monod equation rate in which the growth rate is proportional to the concentration of a key enzyme controlling the single metabolic pathway. In this study, three main metabolic routes for S. cerevisiae are considered: oxidation of lactose, reduction of lactose (producing ethanol), and oxidation of ethanol. The main bioprocess variables determined experimentally were lactose, ethanol, biomass, and dissolved oxygen concentrations. Parameters of the proposed kinetic model were established by fitting the experimental data obtained in a small lab-scale fermentor with the initial lactose concentrations ranging from 5 g/dm3 to 50 g/dm3. A very good agreement between experimental data and simulated profiles of the main variables (lactose, ethanol, biomass, and dissolved oxygen concentrations) was achieved.  相似文献   

16.
Pichia stipitis NRRL Y-7124 is a xylose-fermenting yeast able to accumulate ca. 57 g/L ethanol. Because optimum process conditions are important, data were collected to determine the effects of temperature and pH on growth and fermentation rates and product accumulations. Temperatures (26-35 degrees C) providing optimum biomass and ethanol productivities did not necessarily provide maximum ethanol accumulation. Xylitol and residual xylose concentrations increased with temperature. Maximum ethanol selectivity was achieved at 25-26 degrees C with minimal sacrifice to production rates. The temperature optimum for xylose could not be generalized to glucose fermentations, in which ethanol productivity and accumulation were optimum at 34 degrees C. The optimum pH range for growth and fermentation on xylose was 4-7 at 25 degrees C.  相似文献   

17.
Cultures of Pseudomonas fluorescens DF57 were grown on different carbon and nitrogen sources. Glucose, succinate and acetate were used as carbon source and pulsed to an aerobic steady-state cultivation of P. fluorescens DF57 at D = 0.1 h(-1) with citrate as limiting carbon source. Glucose was utilised with the fastest uptake rate (19.4 C mmol l(-1) h(-1)) compared to succinate (8.8 C mmol l(-1) h(-1)) and acetate (4.3 C mmol l(-1) h(-1)). Acetate triggered an inhibition of cellular metabolism, which resulted in 2-h long growth arrest after its addition to the steady-state culture. The influence of the nitrogen source was investigated in an aerobic cultivation on a mixture of ammonium and nitrate as limiting nitrogen sources and citrate as non-limiting carbon source. When ammonia and nitrate were pulsed to the steady-state culture, they were mainly assimilated into biomass with a maximum uptake rate of 111 and 33 mg N l(-1) h(-1), respectively. Nitrate uptake was never complete as the residual concentration in the chemostat cultivation was 30 mg N l(-1) nitrate. A pulse of nitrite in the cultivation broth resulted in an inhibition of the growth but not of the primary metabolism, as nitrite was taken up at 38 mg N l(-1) h(-1), citrate was consumed and cofactors were produced continuously. In all experiments, oxygen was used as electron acceptor.  相似文献   

18.
Basic issues in the culture of the extremely thermophilic archaeon, Methanothermus fervidus, have been investigated, including culture medium formulation, substrate yield and product yield coefficient, growth rate and stoichiometry, and H(2) uptake kinetics. The pH optimum for growth of this organism was estimated at 6.9. Growth medium buffered with PIPES instead of bicarbonate supported both increased growth rate and maximum biomass concentration. Substitution of titanium(III) citrate for the reducing agent sodium sulfide improved culture performance as well. However, independent adjustment of iron and nickel concentrations from 11 to 111 muM, respectively, and carbon dioxide partial pressure from 5 to 20 psia did not impact the culture of M. fervidus significantly. An elemental balance approach was utilized to aid in design of a defined medium to support growth to a target maximum biomass concentration of at least 1.0 g dry wt/L. The growth of this organism was limited by H(2) availability in this reformulated culture medium. The maximum growth rate and biomass concentration achieved in anaerobic vials with the defined medium was 0.16 h(-1) and 0.74 g dry wt/L, respectively. This maximum biomass concentration was a 72% improvement over that obtained with a literature-based defined medium. The Monod parameter, K(s), with H(2) as limiting substrate, was estimated at 1.1 +/- 0.4 psia (55 +/- 20 muM in the broth), based on a H(2) consumption study. Representative values for the substrate yield, Y(X/CO(2) ), and product yield coefficient, Y(CH(4)/) (X), were determined experimentally to be 1.78 +/- 0.04 g dry wt/mol CO(2), and 0.52 +/- 0.01 mol CH(4)/g dry wt, respectively. A bench-scale fermentation system suitable for the culture of extremely thermophilic anaerobes was designed and constructed and proved effective for the culture of M. fervidus. (c) 1993 Wiley & Sons, Inc.  相似文献   

19.
The study presents a mechanistic model for the evaluation of glucose utilization by Escherichia coli under aerobic and mesophilic growth conditions. In the first step, the experimental data was derived from batch respirometric experiments conducted at 37 degrees C, using two different initial substrate to microorganism (S(0)/X(0)) ratios of 15.0 and 1.3 mgCOD/mgSS. Acetate generation, glycogen formation and oxygen uptake rate profile were monitored together with glucose uptake and biomass increase throughout the experiments. The oxygen uptake rate (OUR) exhibited a typical profile accounting for growth on glucose, acetate and glycogen. No acetate formation (overflow) was detected at low initial S(0)/X(0) ratio. In the second step, the effect of culture history developed under long-term growth limiting conditions on the kinetics of glucose utilization by the same culture was evaluated in a sequencing batch reactor (SBR). The system was operated at cyclic steady state with a constant mean cell residence time of 5 days. The kinetic response of E.coli culture was followed by similar measurements within a complete cycle. Model calibration for the SBR system showed that E. coli culture regulated its growth metabolism by decreasing the maximum growth rate (lower microH) together with an increase of substrate affinity (lower K(S)) as compared to uncontrolled growth conditions. The continuous low rate operation of SBR system induced a significant biochemical substrate storage capability as glycogen in parallel to growth, which persisted throughout the operation. The acetate overflow was observed again as an important mechanism to be accounted for in the evaluation of process kinetics.  相似文献   

20.
The scope of this study included the biodegradation performance and the rate of oxygen transfer in a pilot-scale immobilized soil bioreactor system (ISBR) of 10-L working volume. The ISBR was inoculated with an acclimatized population of contaminant degrading microorganisms. Immobilization of microorganisms on a non-woven polyester textile developed the active biofilm, thereby obtaining biodegradation rates of 81 mg/L x h and 40 mg/L x h for p-xylene and naphthalene, respectively. Monod kinetic model was found to be suitable to correlate the experimental data obtained during the course of batch and continuous operations. Oxygen uptake and transfer rates were determined during the batch biodegradation process. The dynamic gassing-out method was used to determine the oxygen uptake rate (OUR) and volumetric oxygen mass transfer, K(L) a. The maximum volumetric OUR of 255 mg O(2)/L x h occurred approximately at 720-722 h after inoculation, when the dry weight of biomass concentration was 0.67 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号