首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variable (Fv) domain N-glycosylation sites are found in approximately 20% of human immunoglobulin Gs (IgGs) in addition to the conserved N-glycosylation sites in the C(H)2 domains. The carbohydrate structures of the Fv glycans and their impact on in vivo half-life are not well characterized. Oligosaccharide structures in a humanized anti-Abeta IgG1 monoclonal antibody (Mab) with an N-glycosylation site in the complementary determining region (CDR2) of the heavy chain variable region were elucidated by LC/MS analysis following sequential exoglycosidase treatments of the endoproteinase Lys-C digest. Results showed that the major N-linked oligosaccharide structures in the Fv region have three characteristics (core-fucosylated biantennary oligosaccharides with one or two N-glycolylneuraminic acid [NeuGc] residues, zero or one alpha-linked Gal residue, and zero or one beta-linked GalNAc residue), whereas N-linked oligosaccharides in the Fc region contained typical Fc glycans (core-fucosylated, biantennary oligosaccharides with zero to two Gal residues). To elucidate the contribution of Fv glycans to the half-life of the antibody, a method that allows capture of the Mab and determination of its glycan structures at various time points after administration to mice was developed. Anti-Abeta antibody in mouse serum was immunocaptured by immobilized goat anti-human immunoglobulin Fc(gamma) antibody resin, and the captured material was treated with papain to generate Fab and Fc for LC/MS analysis. Different glycans in the Fc region showed the same clearance rate as demonstrated previously. In contrast to many other non-antibody glycosylated therapeutics, there is no strong correlation between oligosaccharide structures in the Fv region and their clearance rates in vivo. Our data indicated that biantennary oligosaccharides lacking galactosylation had slightly faster clearance rates than other structures in the Fv domain.  相似文献   

2.
We analysed the oligosaccharides of a human IgM produced bya human-human-mouse hybridoma at each of its five conservedheavy chain glycosylation sites. Consistent with previous reports,this IgM possesses sialylated oligosaccharides at Asn171, Asn332and Asn395, and high-mannose-type oligosaccharides at Asn402.In contrast to previous reports for human IgMs, we find thatAsn563 is not occupied by oligosaccharide on perhaps 25% ofIgM heavy chains, while occupied Asn563 sites contain both high-mannose-typeand sialylated oligosaccharides. These latter results are consistentwith the glycosylation at Asn563 previously reported for themouse MOPC 104E IgM. We demonstrate that both the human hybridomaIgM and the mouse MOPC 104E IgM are mixtures of pentamers andhexamers, raising the possibility that the unique findings concerningthe glycosylation at Asn563 in this study and the previous studyof the MOPC 104E IgM could be related, at least in part, tothe different packing requirements of the hexameric geometryand the accessibility of oligosaccharides in the hexameric geometryfor processing to complex type. In addition, we used high-pHanion-exchange (HPAE) chromatography, neutral anion-exchangechromatography, fluorophore-assisted carbohydrate electrophoresisand Western blots to compare the oligosaccharide compositionsof the human hybridoma IgM, pooled human serum IgM and two mousemonoclonal IgMs (MOPC 104E and TEPC 183). Of note is the presenceof N-glycolylneuraminic acid (NeuGc) and N-acetymeuraminic acid(NeuAc) at a 2:1 ratio in the oligosaccharides of the humanhybridoma IgM. The presence of both NeuGc and NeuAc complicatesthe interpretation of HPAE chromato-graphs. glycosylation high-pH anion-exchange chromatography human IgM human—mouse hybridoma oligosaccharide  相似文献   

3.
Immunoglobulin M is an especially important product of the immune system because it plays a critical role in early protection against infections. In this report, the glycosylation pattern of the protective murine monoclonal IgM 12A1 to Cryptococcus neoformans polysaccharide was analyzed by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Peptide mapping studies covering 88% of the deduced amino acid sequence indicated that of the six potential N-glycosylation sites in this antibody only five were utilized, as the tryptic peptide derived from monoclonal IgM 12A1 containing Asn-260 was recovered without carbohydrates. The oligosaccharide side chains of monoclonal IgM 12A1 were characterized at each of the N-glycosylation sites. Asn-166 possessed 20 monosialylated and nonsialylated, and fucosylated and nonfucosylated complex- and hybrid-type oligosaccharides and one high-mannose-type oligosaccharide. Thirteen oligosaccharides were attached to the site at Asn-401, including six complex-type, four hybrid-type, and three high-mannose-type oligosaccharides. Twelve hybrid-type oligosaccharides were attached to Asn-378, three of which had terminal sialic acids. Eleven hybrid-type oligosaccharides were attached to Asn-331, seven of which had terminal sialic acids. Only two high-mannose type oligosaccharides were attached to Asn-363. These results indicated great complexity in the structure and composition of oligosaccharides attached to individual IgM glycosylation sites.  相似文献   

4.
Follistatin (FS), a glycoprotein, plays an important role in cell growth and differentiation through the neutralization of the biological activities of activins. In this study, we analyzed the glycosylation of recombinant human FS (rhFS) produced in Chinese hamster ovary cells. The results of SDS-PAGE and MALDI-TOF MS revealed the presence of both non-glycosylated and glycosylated forms. FS contains two potential N-glycosylation sites, Asn95 and Asn259. Using mass spectrometric peptide/glycopeptide mapping and precursor-ion scanning, we found that both N-glycosylation sites were partially glycosylated. Monosaccharide composition analyses suggested the linkages of fucosylated bi- and triantennary complex-type oligosaccharides on rhFS. This finding was supported by mass spectrometric oligosaccharide profiling, in which the m/z values and elution times of some of the oligosaccharides from rhFS were in good agreement with those of standard oligosaccharides. Site-specific glycosylation was deduced on the basis of the mass spectra of the glycopeptides. It was suggested that biantennary oligosaccharides are major oligosaccharides located at both Asn95 and Asn259, whereas the triantennary structures are present mainly at Asn95.  相似文献   

5.
The structural determinants required for interaction of oligosaccharides with Ricinus communis agglutinin I (RCAI) and Ricinus communis agglutinin II (RCAII) have been studied by lectin affinity high-performance liquid chromatography (HPLC). Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of silica-bound RCAI and RCAII. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. RCAI binds oligosaccharides bearing terminal beta 1,4-linked Gal but not those containing terminal beta 1,4-linked GalNAc. In contrast, RCAII binds structures with either terminal beta 1,4-linked Gal or beta 1,4-linked GalNAc. Both lectins display a greater affinity for structures with terminal beta 1,4-rather than beta 1,3-linked Gal, although RCAII interacts more strongly than RCAI with oligosaccharides containing terminal beta 1,3-linked Gal. Whereas terminal alpha 2,6-linked sialic acid partially inhibits oligosaccharide-RCAI interaction, terminal alpha 2,3-linked sialic acid abolishes interaction with the lectin. In contrast, alpha 2,3- and alpha 2,6-linked sialic acid equally inhibit but do not abolish oligosaccharide interaction with RCAII. RCAI and RCAII discriminate between N-acetyllactosamine-type branches arising from different core Man residues of dibranched complex-type oligosaccharides; RCAI has a preference for the branch attached to the alpha 1,3-linked core Man and RCAII has a preference for the branch attached to the alpha 1,6-linked core Man. RCAII but not RCAI interacts with certain di- and tribranched oligosaccharides devoid of either Gal or GalNAc but bearing terminal GlcNAc, indicating an important role for GlcNAc in RCAII interaction. These findings suggest that N-acetyllactosamine is the primary feature required for oligosaccharide recognition by both RCAI and RCAII but that lectin interaction is strongly modulated by other structural features. Thus, the oligosaccharide specificities of RCAI and RCAII are distinct, depending on many different structural features including terminal sugar moieties, peripheral branching pattern, and sugar linkages.  相似文献   

6.
Mouse myeloma immunoglobulin IgM heavy chains were cleaved with cyanogen bromide into nine peptide fragments, four of which contain asparagine-linked glycosylation. Three glycopeptides contain a single site, including Asn 171, 402, and 563 in the intact heavy chain. Another glycopeptide contains two sites at Asn 332 and 364. The carbohydrate containing fragments were treated with Pronase and fractionated by elution through Bio-Gel P-6. The major glycopeptides from each site were analyzed by 500 MHz 1H-NMR and the carbohydrate compositions determined by gas-liquid chromatography. The oligosaccharide located at Asn 171 is a biantennary complex and is highly sialylated. The amount of sialic acid varies, and some oligosaccharides contain alpha 1,3-galactose linked to the terminal beta 1,4-galactose. The oligosaccharides at Asn 332, Asn 364, an Asn 402 are all triantennary and are nearly completely sialylated on two branches and partially sialylated on the triantennary branch linked beta 1,4 to the core mannose. The latter is sialylated about 40% of the time for all three glycosylation sites. The major oligosaccharide located at Asn 563 is of the high mannose type. The 1H-NMR determination of structures at Asn 563 suggests that the high mannose oligosaccharide contains only three mannose residues.  相似文献   

7.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

8.
Human apolipoprotein B100 (apoB100) has 19 potential N-glycosylation sites, and 16 asparagine residues were reported to be occupied by high-mannose type, hybrid type, and monoantennary and biantennary complex type oligosaccharides. In the present study, a site-specific glycosylation analysis of apoB100 was carried out using reversed-phase high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/ESI MS/MS). ApoB100 was reduced, carboxymethylated, and then digested by trypsin or chymotrypsin. The complex mixture of peptides and glycopeptides was subjected to LC/ESI MS/MS, where product ion spectra of the molecular ions were acquired data-dependently. The glycopeptide ions were extracted and confirmed by the presence of carbohydrate-specific fragment ions, such as m/z 204 (HexNAc) and 366 (HexHexNAc), in the product ion spectra. The peptide moiety of glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the product ion spectrum, and the oligosaccharide moiety was deduced from the calculated molecular mass of the oligosaccharide. The heterogeneity of carbohydrate structures at 17 glycosylation sites was determined using this methodology. Our data showed that Asn2212, not previously identified as a site of glycosylation, could be glycosylated. It was also revealed that Asn158, 1341, 1350, 3309, and 3331 were occupied by high-mannose type oligosaccharides, and Asn 956, 1496, 2212, 2752, 2955, 3074, 3197, 3438, 3868, 4210, and 4404 were predominantly occupied by mono- or disialylated oligosaccharides. Asn3384, the nearest N-glycosylation site to the LDL-receptor binding site (amino acids 3359-3369), was occupied by a variety of oligosaccharides, including high-mannose, hybrid, and complex types. These results are useful for understanding the structure of LDL particles and oligosaccharide function in LDL-receptor ligand binding.  相似文献   

9.
Purple acid phosphatase (PAP), also known as tartrate-resistant acid phosphatase or uteroferrin, contains two potential consensus N-glycosylation sites at Asn(97) and Asn(128). In this study, endogenous rat bone PAP was found to possess similar N-glycan structures as rat recombinant PAP heterologously expressed in baculovirus-infected Sf9 insect cells. PAP from Sf9 cells was shown to contain two N-linked oligosaccharides, whereas PAP expressed by mammalian CHO-K1 cells was less extensively glycosylated. The extent of N-glycosylation affected the catalytic properties of the enzyme, as N97Q and N128Q mutants, containing a single oligosaccharide chain, exhibited a lower substrate affinity and catalytic activity compared to those of the fully glycosylated PAP in the native, monomeric state. The differences in substrate affinity and catalytic activity were abolished and partially restored, respectively, by proteolytic cleavage in the loop domain, indicating that the extent of N-glycosylation influences the interaction of the repressive loop domain with catalytically important residues.  相似文献   

10.
This report describes the N-glycosylation site mapping of human serotransferrin (h-STF). Reduced and S-carboxymethylated h-STF was digested with trypsin or chymotrypsin. Glycopeptides in the proteolytic digests were isolated by serial concanavalin A (Con A), Sambucus nigra agglutinin (SNA), and Phaseolus vulgaris leukoagglutinin (LPHA) affinity chromatography and subjected to preliminary analysis by 1H NMR spectroscopy. The glycopeptide fractions were then individually digested with N-glycanase. One part of the digest of each fraction was analyzed by fast atom bombardment-mass spectrometry (FAB-MS) to identify the peptide sequences of the glycosylation sites. The other part was used to isolate the oligosaccharide by the corresponding lectin affinity chromatography and to characterize the structures of the isolated oligosaccharides by 1H NMR spectroscopy and FAB-MS. The oligosaccharides in the Con A-bound fraction were shown to have bi-alpha(2-->6)-sialyl, diantennary structures. The SNA-bound fraction was shown to contain trisialyl, triantennary structures. Di- and triantennary oligosaccharides were found to occur on each of the two N-glycosylation sites of h-STF (Asn413 and Asn611) in the ratio of approximately 85:15. The SNA-bound glycopeptides were further fractionated by LPHA affinity chromatography. Two different oligosaccharides were characterized, namely, a trisialyl 2,4-triantennary and a trisialyl 2,6-triantennary glycan. The ratio of 2,4-triantennary vs 2,6-triantennary oligosaccharides attached to glycosylation site Asn413 was found to be approximately 5:1, whereas the two isomeric triantennary oligosaccharides were found to be attached to glycosylation site Asn611 in the ratio approximately 1:1.  相似文献   

11.
A mouse monoclonal IgM antibody, directed against human blood group B determinant, was isolated from hybridoma culture growth medium. Chemical analysis indicated presence of N- and O-linked oligosaccharides. The N- and O-linked carbohydrate chains were liberated using two different conditions of reductive alkaline degradation. Structural analysis was carried out on the isolated chains using chemical analysis, 500-MHz 1H-NMR spectroscopy and fast-atom-bombardment mass spectrometry. The following composite structures of the N-linked chains were found: (formula; see text) where R = OH for biantennary structures and R = Neu5Ac alpha 2-3Gal beta 1-4 GlcNAc beta 1- or Neu5Ac alpha 2-3Gal beta 1-3[Neu5Ac alpha 2-6]GlcNAc beta 1- for triantennary structures. The O-linked oligosaccharides, found in the light chains, were shown to have the structure Neu5Ac alpha 2-3Gal beta 1-3GalNAc. The native IgM antibody could be separated on a concanavalin-A-Sepharose column into two subfractions, differing in the presence of a high-mannose-type oligosaccharide.  相似文献   

12.
Nimotuzumab (TheraCIM, CIMAher, h-R3, humanized anti-EGF-R antibody), monoclonal antibody (mAb) manufactured at the Center of Molecular Immunology (Havana, Cuba) is currently being tested in several clinical trials. Nimotuzumab has a single N-glycosylation site in the Fc-CH2 fragment but no N-glycosylation site in the Fab region. The current study reports the full characterization of the mAb N-glycosylation and the consistency observed in several production batches from a perfusion mode culturing system that lasted between 68 and 150 days. It confirms that the N-glycan structures of Nimotuzumab expressed in the NS0 murine myeloma cell line are of the murine type. They consist mainly of fucosylated G0, G1 and G2 oligosaccharides, which are normally found in the CH2 region of IgG. Other minor species found were high mannose and sialylated structures. A small portion of the glycans were sialylated (~12%) and the only type of sialic acid detected was N-glycolyl-sialic acid, α2,6-linked to Gal. No Galα1-3Gal moieties were detected.  相似文献   

13.
The mouse monoclonal antibody HNK-1 and the human monoclonal IgM antibody present in patients with polyneuropathy both recognize carbohydrate epitope(s) on human myelin-associated glycoprotein and P0. In the present study, the oligosaccharide structures that bear the antibody epitope(s) were investigated. The extracellular derivative of myelin-associated glycoprotein (dMAG) was purified by immunoaffinity chromatography. P0 was electroeluted from gel slices. Western blot analysis of whole glycoproteins demonstrated that the epitopes for HNK-1 and the human monoclonal IgM antibody were different. The glycopeptides obtained by proteolysis of purified dMAG and P0 were separated and characterized by affinity chromatography on concanavalin A-Sepharose. Both dMAG and P0 displayed heterogeneity in their oligosaccharide structures, i.e., they both contained mainly tri- and tetraantennary oligosaccharides (approximately 80%), although biantennary (10%) and high-mannose and/or hybrid (10%) oligosaccharides were present. The human monoclonal IgM antibody epitope was present on all types of isolated oligosaccharide structures from either dMAG and P0. The HNK-1 epitope was present on all types of oligosaccharide structures of dMAG, whereas it was present only on tri- and tetraantennary structures of P0.  相似文献   

14.
The asparagine-linked sugar chains of recombinant human interleukin 5 produced by Chinese hamster ovary cells were released quantitatively as oligosaccharides by hydrazinolysis. After N-acetylation followed by NaB3H4 reduction, each oligosaccharide was isolated by paper electrophoresis and serial lectin column chromatography. Study of their structures by sequential exoglycosidase digestion in combination with methylation analysis, revealed that they are bi-, tri-, and tetraantennary complex-type with fucosylated and non-fucosylated trimannosyl cores and high mannose type sugar chains. More than 80% of the sugar chains occur as biantennary complex-type sugar chains. Although acidic oligosaccharides amount to only 14% of the total oligosaccharides, their sialic acid residues occur exclusively as the Sia alpha 2----3Gal group. Removal of the sugar moiety from intact recombinant human interleukin 5 produced a 2.5-fold increase of its activity to induce IgM secretion.  相似文献   

15.
The structures of the predominant high mannose oligosaccharides present in a human IgM myeloma protein (Patient Wa) have been determined. The IgM glycopeptides, produced by pronase digestion, were fractionated on DEAE-cellulonalysis shows that glycopeptide I contains Asn, Pro, Ala, Thr, and His and glycopeptide II contains Asn, Val, and Ser, which are the same amino acids found in the sequences around Asn 402 and Asn 563 respectively, to which high mannose oligosaccharides are attached in IgM (Patient Ou) (Putnman, F.W., Florent, G., Paul, C., Shinoda, T., and Shimizu, A. (1973) Science 182, 287-290). The high mannose glycopeptides in IgM (Wa) exhibit heterogeneity in the oligosaccharide portion. Structural analysis of the major oligosaccharides indicates that the simplest structure is: (see article of journal). The larger oligosaccharides present have additional mannose residues linked alpha 1 yields 2 to terminal mannose residues in the above structure. Glycopeptide I contains primarily Man5 and Man6 species, while glycopeptide II contains Man6 and Man8 species. The two Man6 oligosaccharides have different branching patterns.  相似文献   

16.
Cetuximab is a novel therapeutic monoclonal antibody with two N-glycosylation sites: a conserved site in the CH2 domain and a second site within the framework 3 of the variable portion of the heavy chain. The detailed structures of these oligosaccharides were successfully characterized using orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight mass spectrometry (oMALDI Qq-TOF MS) and tandem mass spectrometry (MS/MS) in combination with exoglycosidase digestion. The N-linked oligosaccharides were released by treatment with N-glycanase F, reductively aminated with anthranilic acid, and fractionated by normal phase high-performance liquid chromatography (NP-HPLC). The fluorescent-labeled oligosaccharide pool and fractions were analyzed by oMALDI Qq-TOF MS and MS/MS in negative ion mode. Each fraction was further digested with an array of exoglycosidase mixtures, and subsequent MALDI TOF MS analysis of the resulting products yielded information about structural features of the oligosaccharide. The combined data revealed the presence of 21 distinct oligosaccharide structures in cetuximab. These oligosaccharides differ mainly in degree of sialylation with N-glycolyl neuraminic acid and extent of galactosylation (zero-, mono-, di-, and alpha(1-3)-galactosidase). The individual oligosaccharides were further assigned to the specific sites in the Fab and Fc regions of the antibody. This study represents a unique approach in that MS/MS data were used to identify and confirm the oligosaccharide structures of a protein.  相似文献   

17.
The oligosaccharide structures linked to Asn289 of a recombinant (r) variant (R561S) human plasminogen (HPg) expressed in Chinese hamster ovary (CHO) cells, after transfection of these cells with a plasmid containing the cDNA coding for the variant HPg, have been determined. Employing high-performance anion-exchange liquid chromatography mapping of the oligosaccharide units cleaved from the protein by glycopeptidase F, compared with elution positions of standard oligosaccharides, coupled with monosaccharide compositional determinations and analyses of sequential exoglycosidase digestions and specific lectin binding, we find that considerable microheterogeneity in oligosaccharide structure exists at this sole potential N-linked glycosylation site on HPg. A variety of high-mannose structures, as well as bi-, tri-, and tetraantennary complex-type carbohydrate, has been found, in relative amounts of 1-25% of the total oligosaccharides. The complex-type structures contain variable amounts of sialic acid (Sia), ranging from 0 to 5 mol/mol of oligosaccharide in the different glycan structures. Neither hybrid-type molecules, N-acetylglucosamine bisecting oligosaccharides, nor N-acetyllactosaminyl-repeat structures were found to be present in the complex-type carbohydrate pool in observable amounts. Of interest, a significant portion of the Sia exists an outer arm structures in an (alpha 2,6) linkage to the penultimate galactose, a novel finding in CHO cell-directed glycosylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The glycosylation and processing of the asparagine-linked oligosaccharides at individual glycosylation sites on the mu-chain of murine immunoglobulin M were investigated using variant cell lines that synthesize and secrete IgM heavy chains with known peptide deletions. Normal murine IgM has five N-linked oligosaccharides in the constant region of each heavy or mu-chain. Each mu-chain has four complex-type oligosaccharides as well as a single high mannose-type oligosaccharide near the carboxyl terminus of the molecule. The peptide deletion of the C mu 1 constant region domain in the heavy chains synthesized by one variant cell line did not prevent subsequent glycosylation at more distal glycosylation sites. In fact, the presence of this deletion resulted in more complete glycosylation at the C-terminal glycosylation site. Evaluation of glycopeptides containing individual glycosylation sites by Concanavalin A-Sepharose indicated that this deletion had no significant effect on the processing of structures from high mannose-type to complex-type oligosaccharide chains. In contrast, a deletion of the C-terminal peptide region of the heavy chain of IgM synthesized by a second variant cell line resulted in intracellular processing to more highly branched oligosaccharide structures at several of the glycosylation sites not involved in the deletion.  相似文献   

19.
The in vivo specificity for E-selectin binding to a panel of N-linked oligosaccharides containing a clustered array of one to four sialyl Lewisx (SLex; NeuAcalpha2-3Gal[Fucalpha1-3]beta1-4GlcNAc) determinants was studied in mice. Following intraperitoneal dosing with lipopolysaccharide, radioiodinated tyrosinamide N-linked oligosaccharides were dosed i.v. and analyzed for their pharmacokinetics and biodistribution. Specific targeting was determined from the degree of SLex oligosaccharide targeting relative to a sialyl oligosaccharide control. Oligosaccharides targeted the kidney with the greatest selectivity after a 4-h induction period following lipopolysaccharide dosing. Unique pharmacokinetic profiles were identified for SLex biantennary and triantennary oligosaccharides but not for monovalent and tetraantennary SLex oligosaccharides or sialyl oligosaccharide controls. Biodistribution studies established that both SLex biantennary and triantennary oligosaccharides distributed to the kidney with 2-3-fold selectivity over sialyl oligosaccharide controls, whereas monovalent and tetraantennary SLex oligosaccharides failed to mediate specific kidney targeting. Simultaneous dosing of SLex biantennary or triantennary oligosaccharide with a mouse anti-E-selectin monoclonal antibody blocked kidney targeting, whereas co-administration with anti-P-selectin monoclonal antibody did not significantly block kidney targeting. The results suggest that SLex biantennary and triantennary are N-linked oligosaccharide ligands for E-selectin and implicate E-selectin as a bivalent receptor in the murine kidney endothelium.  相似文献   

20.
Oligosaccharide structures of isolated human colonic mucin species   总被引:17,自引:0,他引:17  
Purified human colonic mucin contains six distinct components which may be separated by DEAE-cellulose chromatography. Past studies defined the structure of oligosaccharide side chains from the most abundant species III, IV, and V which elute at intermediate salt concentrations. In these studies the structures of oligosaccharide side chains liberated from the remaining early and late eluting species I, II, and VI were determined after isolation by sequential conventional and high performance liquid chromatography through combination of gas chromatography, methylation analysis, and sequential glycosidase digestion. Mucin species I, II, and VI contained a less varied array of discrete oligosaccharide structures than that observed in the major mucin components. Mucin species I and II contained five and 10 structures, respectively, which account for 68 and 71% of total oligosaccharide content in these fractions. The predominant oligosaccharides of mucin species I included three neutral structures: a disaccharide GlcNAc beta (1-3)GalNAc-ol, a trisaccharide Gal beta (1-4)GlcNAc beta (1-3)GalNAc-ol, and a tetrasaccharide GlcNAc beta (1-4)Gal beta (1-4)GlcNAc beta (1-3)GalNAc-ol as well as two acidic components representing the sialylated forms of two of these oligosaccharides. Mucin species II contained these same oligosaccharides as well as four additional acidic structures, notably a disaccharide Neu alpha (2-6)GalNAc-ol and a hexasaccharide Gal beta (1-4)GlcNAc beta (1-3)Gal beta (1-4)GlcNAc beta (1-3) (NeuAc alpha (2-6))-GalNAc-ol, not identified in any other mucin species. The late eluting mucin species VI contained at least five discrete neutral oligosaccharides and six major acidic structures. While the majority of these structures had been previously isolated from the earlier eluting mucin species IV and V, species VI also contained di- and trisialylated oligosaccharides not identified in other mucin species. In conjunction with earlier studies of the major mucin species III, IV, and V, these data define the range of oligosaccharide structures present in human colonic mucin. These studies demonstrate that human colonic mucin possesses species with characteristic and distinguishable combinations of oligosaccharides which reflect variations of common core structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号