首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial thymidine kinase (TK2) is responsible for phosphorylation of thymidine and deoxycytidine and plays a crucial role in mitochondrial DNA precursor synthesis. TK2 is expressed in all tissues at low levels complicating accurate determinations, especially in tissues with high cytosolic thymidine kinase (TK1) activity. Recently, 5-bromovinyl 2 '-deoxyuridine (BvdU) at 0.2 micro M was used to measure TK2 activity selectively. BvdU phosphorylation by pure human TK2 and TK1 was tested here, and the ratio of BvdU phosphorylation by TK2/TK1 was 91 at 0.2 micro M but was 500 at 2.5 micro M. Therefore, for reliable measurement of TK2 activity higher BvdU concentration should be used.  相似文献   

2.
Human herpesvirus 8 (HHV8) open reading frame (ORF) 21 is predicted to encode a protein similar to the thymidine kinase (TK) enzyme of other herpesviruses. Expressed in mammalian cells, ORF 21 was found to have low TK activity, based on poor growth in media containing hypoxanthine-aminopterin-thymidine (HAT) and low incorporation of [(3)H]thymidine into high-molecular-weight DNA. Kinetic analysis using HHV8 TK as a purified glutathione S-transferase (GST) fusion protein showed that the enzyme has a comparatively high K(m) for thymidine (dThd) of approximately 33.2 microM. Nearly 50% of the phosphorylated product of the reaction with dThd was thymidylate. This monophosphate kinase activity was more pronounced with 3'-azido-3'-deoxythymidine (AZT), in which 78% of the reaction product was AZT diphosphate. Thymidine analogs competitively inhibited dThd phosphorylation by HHV8 TK, while 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, and corresponding analogs did not. Further competition experiments revealed that the nucleoside analog ganciclovir (GCV), at up to 1,000-fold molar excess, could not significantly inhibit dThd phosphorylation by the enzyme. In support of these data, 143B TK(-) cells expressing HHV8 TK phosphorylated GCV very poorly and were not susceptible to GCV toxicity compared to parental cells. Phosphorylation of [(3)H]GCV by a purified GST-HHV8 TK fusion protein was not detected by high-pressure liquid chromatography analysis. Structural features of HHV8 TK substrate recognition were investigated. Therapeutic implications of these findings are discussed.  相似文献   

3.
We have investigated the effect of bleomycin (BLM) on thymidine phosphorylation in lectin-stimulated normal human lymphocytes. BLM reduces thymidine phosphorylation by decreasing the activity of thymidine kinase (TK). Accordingly, polyacrylamide gel electrophoresis (PAGE) of extracts of cells incubated for 48, 72 and 96 h showed here that this activity dropped 48, 65 and 67% respectively. The electrophoretic profiles of TK activity were similar but different in amplitude. These effects of the BLM were confirmed firstly by direct measurement of TK activity, secondly by amount of 3H-thymidine incorporation in the cultures before cell lysis. Both the measurement of TK activity and 3H-thymidine incorporation were correlated.  相似文献   

4.
Human cells salvage pyrimidine deoxyribonucleosides via 5'-phosphorylation which is also the route of activation of many chemotherapeutically used nucleoside analogs. Key enzymes in this metabolism are the cytosolic thymidine kinase (TK1), the mitochondrial thymidine kinase (TK2) and the cytosolic deoxycytidine kinase (dCK). These enzymes are expressed differently in different tissues and cell cycle phases, and they display overlapping substrate specificities. Thymidine is phosphorylated by both thymidine kinases, and deoxycytidine is phosphorylated by both dCK and TK2. The enzymes also phosphorylate nucleoside analogs with very different efficiencies. Here we present specific radiochemical assays for the three kinase activities utilizing analogs as substrates that are by more than 90 percent phosphorylated solely by one of the kinases; i.e. 3'-azido-2',3'-dideoxythymidine (AZT) as substrate for TK1, 1-beta-D-arabinofuranosylthymidine (AraT) for TK2 and 2-chlorodeoxyadenosine (CdA) for dCK. We determined the fraction of the total deoxycytidine and thymidine phosphorylating activity that was provided by each of the three enzymes in different human cells and tissues, such as resting and proliferating lymphocytes, lymphocytic cells of leukemia patients (chronic lymphocytic, chronic myeloic and hairy cell leukemia), muscle, brain and gastrointestinal tissue. The detailed knowledge of the pyrimidine deoxyribonucleoside kinase activities and substrate specificities are of importance for studies on chemotherapeutically active nucleoside analogs, and the assays and data presented here should be valuable tools in that research.  相似文献   

5.
Mitochondrial thymidine kinase (TK2) is responsible for phosphorylation of thymidine and deoxycytidine and plays a crucial role in mitochondrial DNA precursor synthesis. TK2 is expressed in all tissues at low levels complicating accurate determinations, especially in tissues with high cytosolic thymidine kinase (TK1) activity. Recently, 5-bromovinyl 2 ′-deoxyuridine (BvdU) at 0.2 μ M was used to measure TK2 activity selectively. BvdU phosphorylation by pure human TK2 and TK1 was tested here, and the ratio of BvdU phosphorylation by TK2/TK1 was 91 at 0.2 μ M but was 500 at 2.5 μ M. Therefore, for reliable measurement of TK2 activity higher BvdU concentration should be used.  相似文献   

6.
In vitro culture of H9 human lymphoid cells in the presence of 5.0 microM dideoxycytidine (ddC), for about 40-45 days, selected cells (H9-ddC cells), which were resistant to the drug and cross-resistant to AZT (zidovudine) and 5-fluoro-2'-deoxyuridine (FdUR). The major mechanism of cross-resistance to AZT and FdUR in these cells was low cellular activity of thymidine kinase (TK). To explore molecular mechanisms of the reduced TK activity in H9-ddC cells, the mRNA expression of TK1 and TK2 and western blot analysis of TK1 protein were performed. RT-PCR analysis revealed that in H9-ddC cells the expression of both TK1 and TK2 mRNA was reduced to 27.1% and 79.4%, respectively. The reduced TK1 gene expression was confirmed by an absence of a detectable TK1 protein band in western blot of H9-ddC cells. These results demonstrate that long-term treatment of H9 cells in the presence of ddC down-regulated TK1 and TK2 gene expression and reduced the expression and activity of TK in the resistant cells.  相似文献   

7.
The first step for the intracellular retention of several anticancer or antiviral nucleoside analogues is the addition of a phosphate group catalysed by a deoxyribonucleoside kinase such as thymidine kinase 1 (TK1). Recently, human TK1 (HuTK1) has been crystallized and characterized using different ligands. To improve our understanding of TK1 substrate specificity, we performed a detailed, mutation-based comparative structure-function study of the active sites of two thymidine kinases: HuTK1 and Caenorhabditis elegans TK1 (CeTK1). Specifically, mutations were introduced into the hydrophobic pocket surrounding the substrate base. In CeTK1, some of these mutations led to increased activity with deoxycytidine and deoxyguanosine, two unusual substrates for TK1-like kinases. In HuTK1, mutation of T163 to S resulted in a kinase with a 140-fold lower K(m) for the antiviral nucleoside analogue 3'-azido-3'-deoxythymidine (AZT) compared with the natural substrate thymidine. The crystal structure of the T163S-mutated HuTK1 reveals a less ordered conformation of the ligand thymidine triphosphate compared with the wild-type structure but the cause of the changed specificity towards AZT is not obvious. Based on its highly increased AZT activity relative to thymidine activity this TK1 mutant could be suitable for suicide gene therapy.  相似文献   

8.
9.
Human cytosolic thymidine kinase (TK1) is tightly regulated in the cell cycle by multiple mechanisms. Our laboratory has previously shown that in mitotic-arrested cells human TK1 is phosphorylated at serine-13, accompanied by a decrease in catalytic efficiency. In this study we investigated whether serine-13 phosphorylation regulated TK1 activity and found that substitution of serine-13 with aspartic acid (S13D), which mimics phosphorylation, not only diminished the ATP-activating effect on the enzyme, but also decreased its thymidine substrate affinity. Our experimental results further showed that the S13D mutation perturbed ATP-induced tetramerization of TK1. Given that the dimeric form of TK1 is less active than the tetrameric, we propose that mitotic phosphorylation of serine-13 is of physiological importance, in that it may counteract ATP-dependent activation of TK1 by affecting its quaternary structure, thus attenuating its enzymatic function at the G2/M phase.  相似文献   

10.
The regulation of thymidine secretion by macrophages.   总被引:5,自引:0,他引:5  
The secretion of thymidine by mononuclear phagocytes was correlated with the activity of the enzyme thymidine kinase (TK). Macrophages cultured in regular tissue culture medium released thymidine and did not express TK. However, when macrophages were incubated with medium conditioned by L cells, they expressed TK, incorporated 3H thymidine into trichloroacetic acid precipitable material, and ceased to secrete the nucleotide. Furthermore, replicating P388/D1 cells were induced to secrete thymidine by inhibiting TK with d-glucosamine. These results have demonstrated an inverse relationship between thymidine secretion and the expression of TK. They suggest that thymidine secretion by macrophages may be attributed to their lack of TK activity.  相似文献   

11.
4'-Azidothymidine (ADRT) is a novel nucleoside analog, that selectively inhibits human immunodeficiency virus replication in human lymphocytes. Unlike the dideoxyribonucleoside analogs and 3'-azido-2',3'-dideoxythymidine (AZT), ADRT retains the 3'-hydroxy group. The pathways of ADRT metabolism were elucidated by determining: (i) the kinetics of the interactions of ADRT and its metabolites with enzymes of thymidine metabolic pathways, (ii) the pool sizes of phosphorylated metabolites, and (iii) the nature of ADRT incorporation into human DNA. ADRT is not a substrate for thymidine phosphorylase, but is metabolized by kinases. Thymidine kinase phosphorylates ADRT to ADRT monophosphate (ADRT-MP). For this enzyme, ADRT has a Ki value of 5.2 microM, in comparison to a Km value of 0.7 microM for thymidine. The Km value of ADRT toward thymidine kinase is 8.3 microM and the rate of ADRT phosphorylation is 1.4% that of thymidine phosphorylation. ADRT-MP has a low affinity toward thymidylate kinase (a Ki value of 28.9 microM versus a Km value of 0.56 microM for thymidylate), and toward thymidylate synthase (a Ki value of 180 microM versus a Km value of 8 microM for deoxyuridylate). The results suggest that ADRT can be activated effectively by cellular kinases without significant interference of normal thymidine metabolism. In cultured human lymphocytes (A3.01, H9, and U937 cells), ADRT was phosphorylated efficiently to ADRT 5'-triphosphate (ADRT-TP), which is the major metabolite of ADRT. The intracellular concentrations of ADRT-TP ranged from 1 to 3.3 microM after 24 h of incubation with 2 microM of ADRT and the half-life of ADRT-TP varied from 3 to 6 h. Although ADRT-TP is a poor competitive inhibitor against dTTP toward DNA polymerases alpha and beta with Ki values of 62.5 and 150 microM, respectively. ADRT-MP was found to be internally incorporated into cellular DNA. The extent of ADRT-MP substitution for dTMP in DNA was 1 in 6979 for A3.01 cells incubated with 2.9 microM ADRT for 24 h. Internal incorporation of ADRT-MP contrasts with the mechanism of other 2',3'-dideoxynucleoside analogs (i.e. AZT, ddC, ddI, d4T...), which are DNA chain terminators. This finding indicates that a 3'-deoxy structure in a nucleoside analog is not a prerequisite for anti-human immunodeficiency virus activity.  相似文献   

12.
1. Phosphorolysis and phosphorylation rates of inosine, guanosine and deoxyguanosine were determined in disrupted and intact human and ovine lymphocytes and rat thymocytes and related with their effect on mitogenic stimulation. 2. Activity of purine nucleoside phosphorylase (EC 2.4.2.1) was about 10 times higher in extracts of human lymphocytes than in those of ovine lymphocytes and rat thymocytes. Apparent Km values for inosine and guanosine were higher in human lymphocytes (about 100 microM) than in ovine lymphocytes (50 microM). Apparent Km values for deoxyguanosine were about 100 microM in the extracts of all three cell types. 3. In extracts of human and ovine lymphocytes the presence of guanosine kinase activity was established. Deoxyguanosine kinase activity was detected in all three cell types. 4. The rate of phosphorylation of deoxyguanosine was much lower than the rate of phosphorolysis both in extracts and in intact cells. 5. Deoxyguanosine, guanosine and inosine were incorporated by intact cells into nucleotides and nucleic acids. This incorporation of deoxyguanosine and guanosine was only partially due to phosphorolysis and subsequent conversion by hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8). The incorporation of inosine appeared to be due completely to this route. 6. Inosine (0.5 mM) did not inhibit thymidine incorporation of phytohemagglutinin-stimulated human and ovine lymphocytes. At the same concentration deoxyinosine caused 50% inhibition, but guanosine and deoxyguanosine inhibited almost completely. Thymidine incorporation of concanavalin A-stimulated rat thymocytes was hardly inhibited by 0.5 mM inosine, deoxyinosine and guanosine, but 50 microM and 0.5 mM deoxyguanosine caused 25% and complete inhibition, respectively.  相似文献   

13.
The cell type predominantly infected by maedi-visna virus (MVV) is the macrophage, and we have looked at the ability of MVV-infected macrophages to interact with cytotoxic T lymphocytes (CTL), important effector cells against virus infections. MVV-specific CTL precursors were detected, after in vitro culture with MVV antigen and recombinant human interleukin-2, in peripheral blood lymphocytes of all MVV-infected sheep. MVV-infected monocyte-derived macrophages and alveolar macrophages were able to stimulate CTL activity in vitro and were targets for these activated CTL. The major effector cell population using MVV-infected macrophage targets was CD8+ lymphocytes, although another population, lymphokine-activated killer cells, may also have been involved. There was no direct cytotoxic activity found in alveolar lymphocytes from MVV-infected sheep without lung lesions.  相似文献   

14.
The aim of this study was to determine molecular mechanism(s) responsible for the reduced thymidine kinase activity (TK) observed earlier in an arabinosylcytosine (araC) resistant lymphoid cell line (H9-araC cells), which was obtained following continuous cultivation of H9 cells in the presence of 0.5 microM araC. Compared to H9 cells, in H9-araC cells TK1 and TK2 gene expressions were reduced to 17.7% and 2.5%, respectively, and the cellular AZT accumulation was diminished to 35.8%. These cells were also found cross-resistant to azidothymidine (>42-fold). There was no significant difference in the expression of MDR1, MRP4 or TK protein. The lack of correlation between the expressions of TK protein and TK1 and TK2 suggests that post-translational factors may also play a role in the reduced TK activity in H9-araC cells. These findings suggest that araC affects TK expression at the genetic level.  相似文献   

15.
The two thymidine (dThd) kinases in human cells, the cytosolic, S-phase-specific TK1 and the mitochondrial, constitutively expressed TK2 were purified to homogeneity as judged from sodium dodecyl sulfate-gel electrophoresis. The substrate specificity of TK1 and TK2 toward natural substrates and important nucleoside analogues was compared. With TK1, the Km values for 5-fluorodeoxyuridine (FdUrd), 3'-azido-2',3'-dideoxythymidine (AZT), and 3'-fluoro-2',3'-dideoxythymidine (FLT) were 2.2, 0.6, and 2.1 microM as compared to 0.5 microM for dThd and 9 microM for deoxyuridine (dUrd). With TK2, dUrd, deoxycytidine (dCyd), and 5-fluorodeoxyuridine (FdUrd) were efficiently phosphorylated, but with distinctly different kinetics: Michaelis-Menten kinetics with dCyd, dUrd, and FdUrd; negative cooperativity with dThd. Negative cooperativity was also observed with AZT, although this drug was a very poor substrate for TK2 with a Vmax of 5-6% of that with dThd. FLT, 2',3'-dideoxycytidine (ddCyd), and arabinofuranosylcytosine (araC) were not substrates for TK2, and 2',3'-didehydrodideoxy-thymidine (D4T) was not a substrate for TK1 or TK2. On the other hand, AZT, FLT, and D4T were competitive inhibitors with Ki values of 0.6, 6, and 2073 microM for TK1, and 2, 10, and 78 microM for TK2, respectively. The much lower tolerance for modifications of the deoxyribose moiety of TK2 as compared to TK1 is important for the design of new antiviral nucleoside analogues intended for use in cells with different expression of TK1 and TK2.  相似文献   

16.
Mitochondrial thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) catalyze the initial phosphorylation of pyrimidine and purine deoxyribonucleosides, and are essential for maintaining mitochondrial dNTP pools for mitochondrial DNA replication. Here the expression of mitochondrial TK2 and dGK in relation to cell growth phases in cultured cells was investigated. TK2 and dGK protein levels in isolated mitochondria and TK2 activity in total cell extracts from U2OS and TK1 deficient L929 cells were determined. We found that TK2 levels were negatively correlated with cell growth rates and there was an exponential increase in TK2 levels in cells entering stationary phase. The expression of dGK did not change and appeared to be constitutive.  相似文献   

17.
Summary The two thymidine kinases, TK 1 and TK 2, found in phytohemagglutinin-stimulated human lymphocytes and the thymidine kinase, TK 2N, found in unstimulated human lymphocytes were purified and characterized. All three kinases had molecular weights between 70000 and 75000 which increased to 170000–200000 in the presence of 2 mM ATP.Studies on the kinetic properties of the enzymes with thymidine and ATP as the substrates and dTTP as the inhibitor showed clear differences between TK 1 and TK 2, but a close similarity between TK 2 and TK 2N. With thymidine as the variable substrate, TK 1 showed Michaelis-Menten kinetics, whereas TK 2 and TK 2N showed characteristic biphasic kinetics. With ATP as the variable substrate, all three enzymes showed positive cooperative kinetics, but TK 2 and TK 2N lost the cooperativity in the presence of dTTP. The results from inhibition studies showed, that dTTP was a cooperative inhibitor of TK 1 but a non-cooperative inhibitor of TK 2 and TK 2N.  相似文献   

18.
Rabbit antisera were produced against a lymphokine-activated human macrophage cell line, U937 (αU937), and human peritoneal macrophages (αPEMØ). After absorption with AB erythrocytes, pooled platelets, and B-lymphoblastoid cell lines, both antisera reacted by microcytotoxicity, indirect immunofluorescence (IF), and radioimmunoassay (RIA) with adherence-purified human peripheral blood monocytes, splenic and peritoneal macrophages, and leukemic myelomonoblasts. A panel of normal human T lymphocytes, B lymphocytes, and erythroid-myeloid or lymphoblastoid cell lines failed to react with both αU937 and αPEMØ. Although both heteroantisera reacted against polymorphonuclear leukocytes (PMNs), after absorption with PMNs specific reactivity against mononuclear phagocytes remained. Absorption of αU937 and αPEMØ with myelomonoblastic leukemia cells (AMML) removed IF and RIA activity against both PMNs and monocytes but not against splenic and peritoneal macrophages. In contrast, absorptions of both heteroantisera preparations with splenic macrophages abolished their IF and RIA reactivity not only to splenic and peritoneal macrophages but also to peripheral blood monocytes and leukemic myelomonoblasts. These results are consistent with (1) both antisera defining specific monocyte/macrophage-associated antigens(s) which are distinct from MHC-coded HLA-A,B,C, and DR antigens, and (2) expression of common monocyte/macrophage-associated antigen(s) and uniquely associated antigen(s) selectively expressed on tissue macrophages. These reagents will be useful in delineating human monocyte/macrophage differentiation as well as the immunological functions of mononuclear phagocytes.  相似文献   

19.
Human alveolar macrophage have three distinct receptors for IgG: FcRI, FcRII, and FcRIII. In order to compare the ability of these receptors to mediate target cell lysis, three different assay systems were examined. First, we studied lysis of chicken E (CE) opsonized with heteroantibodies, which are synthetic antibodies composed of Fab fragments with anti-FcR activity covalently linked to Fab fragments with anti-CE activity. We found alveolar macrophage readily lysed heteroantibody-opsonized CE via each of the three FcR classes (FcRI, 20 +/- 5%; FcRII, 27 +/- 7%; and FcRIII, 13 +/- 13%, p less than 0.05). Non-FcR-dependent lysis of anti-beta 2-microglobulin x anti-CE heteroantibody-opsonized CE was not detected. Second, lysis of hybridoma cell lines bearing anti-FcR antibodies on their cell surface was examined to assess killing of "tumor-like" target cells. Whereas peripheral blood monocytes and lymphocytes were able to lyse hybridoma cell lines bearing surface anti-FcR mAb, alveolar macrophages were not. Third, activity of alveolar macrophage FcR was examined in a conventional antibody-dependent cellular cytotoxicity assay by using O+ (R1,R2) human RBC opsonized with human anti-D and anti-CD serum as target cells. We found lysis of anti-D and anti-CD opsonized human RBC was mediated exclusively via FcRI. No activity of FcRII or FcRIII was detected in these latter assays even if performed under conditions that impair FcRI activity. Thus, all three FcR present on alveolar macrophage mediate lysis of heteroantibody-opsonized CE; in contrast, with the use of a conventional antibody-dependent cellular cytotoxicity assay, only FcRI activity was detected. We were unable to demonstrate lysis of anti-FcR-bearing hybridoma cell lines by alveolar macrophages.  相似文献   

20.
CTL (cytotoxic T lymphocytes) and LGL (large granular lymphocytes) exocytose cytoplasmic granules on activation after recognition of their target, releasing granule-associated molecules. We have previously suggested that this process could release immunoregulatory molecules. In this study we investigated whether normal human LGL granules contained a factor regulating different macrophage activity. Human CD3+ LGL cells were generated by activating peripheral blood lymphocytes (PBL) for 10-12 days with recombinant human IL-2 (rhIL-2), and granules were isolated from disrupted cell homogenate by Percoll gradient fractionation. Solubilized granules were tested for macrophage-activating factor (MAF) activity in three different macrophage assays. When M-CSF-differentiated murine bone marrow-derived macrophages were incubated 9 hr with human LGL granules, they were fully activated to lyse the TNF-resistant P815 tumor cells. The granule-MAF showed a synergistic effect with rhIL-1 beta, rmTNF-alpha, and rmIFN-tau in the cytolytic assay. In addition, proteose-peptone-elicited murine peritoneal macrophages profoundly increased H2O2 production after activation with human LGL granules. However, unlike IFN-tau, no increase in peritoneal macrophage Ia antigen expression was detected after incubation with granules. Moreover, granule-MAF suppressed Ia induction by IFN-tau. These results confirm that human CD3+ LGL granules contain a molecule(s) capable of regulating macrophage function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号