首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultures of the water fern Azolla pinnata R, Br. exposed for1 week to atmospheric NO2 (50, 100 or 200 nl l-1) induced additionallevels of nitrate reductase (NaR) protein and nitrite reductase(NiR) activity. At low concentrations of NO2 (50 nl l-1), nitratederived from NO2 provides an alternative N source for Azollabut does not affect rates of acetylene reduction. However, thesymbiotic relationship between Azolla and its endosymbiont,Anabaena azollae is only affected adversely by high concentrations(100 and 200 nl l-1) of atmospheric NO2. The resultant decreasesin rate of growth, nitrogen fixation, heterocyst formation,and overall nitrogen cycling are probably due to the additionalaccumulation of N products derived from higher levels of atmosphericNO2. Parallel increases in levels of polyamines suggest thatAzolla partially alleviates these harmful effects by incorporatingsome of the extra NO2-induced N into polyamines.Copyright 1994,1999 Academic Press Azolla-Anabaena symbiosis, nitrogen dioxide pollution, nitrogen metabolism, polyamines  相似文献   

2.
Seedlings of Ricinus communis L. cultivated in quartz sand weresupplied with a nutrient solution containing either 1 mol m–3NO3 or 1 mol m–3 NH+4 as the nitrogen source. Duringthe period between 41 and 51 d after sowing, the flows of N,C and inorganic ions between root and shoot were modelled andexpressed on a fresh weight basis. Plant growth was clearlyinhibited in the presence of NH+4. In the xylem sap the majornitrogenous solutes were nitrate (74%) or glutamine (78%) innitrate or ammonium-fed plants, respectively. The pattern ofamino acids was not markedly influenced by nitrogen nutrition;glutamine was the dominant compound in both cases. NH+4 wasnot transported in significant amounts in both treatments. Inthe phloem, nitrogen was transported almost exclusively in organicform, glutamine being the dominant nitrogenous solute, but theN-source affected the amino acids transported. Uptake of nitrogenand carbon per unit fresh weight was only slightly decreasedby ammonium. The partitioning of nitrogen was independent ofthe form of N-nutrition, although the flow of nitrogen and carbonin the phloem was enhanced in ammonium-fed plants. Cation uptakerates were halved in the presence of ammonium and lower quantitiesof K+, Na+ and Ca2+ but not of Mg2+ were transported to theshoot. As NH+4 was balanced by a 30-fold increase in chloride in thesolution, chloride uptake was increased 6-fold under ammoniumnutrition. We concluded that ammonium was predominantly assimilated inthe root. Nitrate reduction and assimilation occurred in bothshoot and root. The assimilation of ammonium in roots of ammonium-fedplants was associated with a higher respiration rate. Key words: Ricinus communis, nitrogen nutrition (nitrate/ammonium), phloem, xylem, transport, partitioning, nitrogen, carbon, potassium, sodium, magnesium, calcium, chloride  相似文献   

3.
The growth rates of four saline-lake diatom taxa were measuredunder varying conditions of salinity (5, 8 and 11), brine type(sulfate- versus bicarbonate-dominated) and nitrogen form (NH4+versus NO3), using a full factorial design. With NO3as the nitrogen source, Cyclotella quillensis, Cymbella pusillaand Anomoeoneis costata exhibited lower growth rates in thesulfate versus bicarbonate media. The strain of Chaetoceroselmorei used in these experiments, isolated from a sulfate-dominatedlake, was unable to grow on NO3 alone. In the NH4+ treatments,neither salinity nor brine type affected the growth rates ofC.quillensis or C.elmorei. When supplied with NH4+, C.pusillaand A.costata had higher growth rates in the bicarbonate versussulfate media, although for C.pusilla the difference on NH4+was not as great as on NO3. The impact of brine typeon NO3 use is consistent with the theory that sulfateinhibits molybdate uptake, as molybdenum is required for NO3use but not NH4+. Cymbella pusilla was the only taxon affectedby changes in salinity. The four taxa used in these experimentsare frequently found in saline lakes and saline-lake sediments,hence they are used in paleoclimate reconstructions; the resultspresented here provide additional information that may enhancethese diatom-based reconstructions.  相似文献   

4.
The effects of NO-3 and NH+4 nutrition on hydroponically grownwheat (Triticum aestivum L.) and maize (Zea mays L.) were assessedfrom measurements of growth, gas exchange and xylem sap nitrogencontents. Biomass accumulation and shoot moisture contents ofwheat and maize were lower with NH+4 than with NO-3 nutrition.The shoot:root ratios of wheat plants were increased with NH+4compared to NO-3 nutrition, while those of maize were unaffectedby the nitrogen source. Differences between NO-3 and NH+4-fedplant biomasses were apparent soon after introduction of thenitrogen into the root medium of both wheat and maize, and thesedifferences were compounded during growth. Photosynthetic rates of 4 mM N-fed wheat were unaffected bythe form of nitrogen supplied whereas those of 12 mM NH+4-fedwheat plants were reduced to 85% of those 12 mM NO-3-fed wheatplants. In maize supplied with 4 and 12 mM NH+4 the photosyntheticrates were 87 and 82% respectively of those of NO-3-fed plants.Reduced photosynthetic rates of NH+4 compared to NO-3-fed wheatand maize plants may thus partially explain reduced biomassaccumulation in plants supplied with NH+4 compared to NO-3 nutrition.Differences in the partitioning of biomass between the shootsand roots of NO-3-and NH+4-fed plants may also, however, arisefrom xylem translocation of carbon from the root to the shootin the form of amino compounds. The organic nitrogen contentof xylem sap was found to be considerably higher in NH+4- thanin NO-3-fed plants. This may result in depletion of root carbohydrateresources through translocation of amino compounds to the shootin NH+4-fed wheat plants. The concentration of carbon associatedwith organic nitrogen in the xylem sap of maize was considerablyhigher than that in wheat. This may indicate that the shootand root components of maize share a common carbon pool andthus differences induced by different forms of inorganic nitrogenare manifested as altered overall growth rather than changesin the shoot:root ratios.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize, nitrogen, growth, photosynthesis, amino acids, xylem  相似文献   

5.
Reactions to the input of acidic gases were investigated inleaves of Quercus robur L. exposed to different concentrationsof SO2 (80, 120, and 160 nl I–1) for 32 to 70 d. Two-year-oldoaks were grown in nutrient solutions with varied nitrogen formand were fumigated in closed chambers. An attempt was made toidentify the mechanisms of proton neutralization by consideringthe uptake of nitrogen, the increase in sulphur and carboxylatecontents, and the excretion of hydroxyl ions or protons. Inaddition, nitrate reductase activity was determined in the leaves. The reduction of sulphur was not involved in the neutralizationof protons generated by SO2-uptake, whereas organic acid metabolismplayed a decisive role. Depending on SO2-concentration, durationof fumigation and nitrogen supply, oaks reacted with a reductionin the size of the carboxylate pool in the leaves, and/or withan increase in proton excretion (or a decrease in hydroxyl ionexcretion). Nitrate reductase activity increased in the leavesof nitrate-grown oaks exposed to the highest SO2-concentration(160 nl l–1) for 42 d. The capacity of the mechanismsconsidered is sufficient for the neutralization of the calculatedamounts of protons resulting from SO2-uptake. Key words: Leaves, neutralization, protons, Quercus, sulphur dioxide  相似文献   

6.
We examined the NO3 and NH4+ uptake capabilities of thedinoflagellate Peridinium cinctum and of the accompanying nanoplanktonduring the spring P. cinctum bloom in Lake Kin-neret. Throughoutthe Peridinium season, the smaller algae had greater affinitiesand faster specific uptake rates for both NO3and NH4+It appears that P. cinctum cannot directly compete with nanoplanktonfor nitrogen nutrients. Other factors such as the ability ofdinoflagellates to swim freely in the water column and low grazingpressures may explain their dominance in the lake.  相似文献   

7.
At low nitrogen (N) supply, it is well known that rye has ahigher biomass production than wheat. This study investigateswhether these species differences can be explained by differencesin dry matter and nitrogen partitioning, specific leaf area,specific root length and net assimilation rate, which determineboth N acquisition and carbon assimilation during vegetativegrowth. Winter rye (Secale cereale L.), wheat (Triticum aestivumL.) and triticale (X Triticosecale) were grown in solution cultureat relative addition rates (RN) of nitrate-N supply rangingfrom 0.03–0.18 d-1and at non-limiting N supply under controlledconditions. The relative growth rate (RW) was closely equalto RNin the range 0.03–0.15 d-1. The maximalRW at non-limitingnitrate nutrition was approx. 0.18 d-1. The biomass allocationto the roots showed a considerable plasticity but did not differbetween species. There were no interspecific differences ineither net assimilation rate or specific leaf area. Higher accumulationof N in the plant, despite the same relative growth rate atnon-limiting N supplies, suggests that rye has a greater abilityto accumulate reserves of nitrogen. Rye had a higher specificroot length over a wide range of sub-optimal N rates than wheat,especially at extreme N deficiency (RN=0.03–0.06 d-1).Triticale had a similar specific root length as that of wheatbut had the ability to accumulate N to the same amount as ryeunder conditions of free N access. It is concluded that thebetter adaptation of rye to low N availability compared to wheatis related to higher specific root length in rye. Additionally,the greater ability to accumulate nitrogen under conditionsof free N access for rye and triticale compared to wheat maybe useful for subsequent N utilization during plant growth.In general, species differences are explained by growth componentsresponsible for nitrogen acquisition rather than carbon assimilation.Copyright 1999 Annals of Botany Company Growth analysis, nitrogen, nitrogen productivity, partitioning, specific root length, Secale cereale L.,Triticum aestivum L., X Triticosecale, winter rye, winter wheat, winter triticale.  相似文献   

8.
DAKORA  FELIX D. 《Annals of botany》1998,82(5):687-690
Nitrogen-fixing activity in two nodulated African legumes, Bambaragroundnut (Vigna subterraneaL.) and Kersting's bean (MacrotylomageocarpumL.), was assessed in the presence of nitrate (NO3-)ions in the rooting medium. Nitrogenase activity was unimpairedby the supply of 5 mol m-3NO3to both species. Also, large concentrationsof ureides dominated the transpiration stream of NO3-fed plants.Compared to other symbiotic legumes cultured with similar NO3concentrations,nodule functioning in the tested landraces of Bambara groundnutand Kersting's bean is tolerant of NO3ions in the rhizosphere.The potential benefits of such naturally occurring NO3-tolerantsymbioses are substantial, as they would permit inorganic Nfertilizer application in intercropping systems without inhibitingN2fixation in the associated legumes.Copyright 1998 Annals ofBotany Company NO3tolerance, Bambara groundnut, Kersting's bean, nitrogenase activity, xylem ureides.  相似文献   

9.
The uptake rate of carbon and nitrogen (ammonium, nitrate andurea) by the Microcystis predominating among phytoplankton wasinvestigated in the summer of 1984 in Takahamaira Bay of LakeKasumigaura. The Vmax values of Microcystis for nitrate (0.025–0.046h–1) and ammonium (0.15–0.17 h–1) were considerablyhigher than other natural phytoplankton. The ammonium, nitrateand urea uptake by Microcystis was light dependent and was notinhibited with nigh light intensity. The K1 values were farlower than the Ik values. The carbon uptake was not influencedby nitrogen enrichment. Microcystis accelerated the uptake rateby changing Vmax/K s value when nitrogen versus carbon contentin cells declined. Nitrate was scarcely existent in TakahamairiBay during the summer, when Microcystis usually used ammoniumas the nitrogen source. However, the standing stock of ammoniumin the water was far lower than the daily ammonium uptake rates.Therefore, the ammonium in this water had to be supplied becauseof its rapid turn-over time (–0.7–2.6 h).  相似文献   

10.
The single-gene mutation afila in pea (Pisum sativum L.) resultsin the replacement of proximal leaflets with branched tendrils,thereby reducing leaf area. This study investigated whethertheafila line could adjust biomass partitioning when exposedto varying nutrient regimes, to compensate for reduced leafarea, compared with wild-type plants. Wild-type and afila near-isogeniclines were grown in solution culture with nitrate-N added toinitially N-starved seedlings at relative addition rates (RN)of 0.06, 0.12, 0.15 and 0.50 d-1. The relative growth rate (RW)of the whole plants closely matched RNat 0.06 and 0.12 d-1,but higher RNresulted in a slightly higher growth rate. At agiven RN, the wild-type line had lower plant nitrogen statusthan the afila line. RWof the roots of the afila line was lessthan RWof the roots of the wild-type at the three higher ratesof N supply despite a greater accumulation of N in the rootsof the afila plants. Consequently, plant nitrogen productivity(growth rate per unit nitrogen) was lower for afila. Dry matterallocation was strongly influenced by nitrogen status, but nodifferences in shoot–root dry matter allocation were foundbetween wild-type and afila with the same plant N status. Theseresults imply that decreased leaf area as a result of the single-genemutation afila affects dry matter allocation, but only accordingto its effect on the nitrogen status. Copyright 2000 Annalsof Botany Company Pisum sativum, pea, nitrogen limitation, growth, shoot–root allocation, relative growth rate, nitrogen productivity, isolines  相似文献   

11.
Phosphorus and nitrogen uptake capacities were assessed during36–58 d drying cycles to determine whether the abilityof sagebrush (Artemisia tridentata Nutt.) to absorb these nutrientschanged as the roots were subjected to increasing levels ofwater stress. Water was withheld from mature plants in large(6 I) containers and the uptake capacity of excised roots insolution was determined as soil water potentials decreased from–0.03 MPa to –5.0 MPa. Phosphorus uptake rates of excised roots at given substrateconcentrations increased as preharvest soil water potentialsdecreased to –5.0 MPa. Vmax and Km also increased as soilwater potentials declined. Declining soil water potentials depressednitrogen uptake at set substrate concentrations, but uptakecapacity, calculated as the sum Vmax for both NH+4+NO3,did not change significantly with drying. The sum Vmax correlatedwith root nitrogen concentration. Root uptake capacity for nitrogen and phosphorus was extremelystable under severe water stress in this aridland shrub. Maintenanceof uptake capacity, coupled with a previously demonstrated abilityto conduct hydraulic lift, may enable A. tridentata better tomaintain nitrogen and phosphorus uptake as soil water availabilitydeclines. These mechanisms may be important in the ability ofA. tridentata to maintain growth, complete reproduction, andgain an advantage against competitors late in the season whenthe soil layers with higher nutrient availability are dry. Key words: Kinetics, nitrogen, phosphorus, roots, water stress  相似文献   

12.
Marques, I. A., Oberholzer, M. J. and Erismann, K. H. 1985.Metabolism of glycollate by Lemna minor L. grown on nitrateor ammonium as nitrogen source.—J. exp. Bot. 36: 1685–1697. Duckweed, Lemna minor L., grown on inorganic nutrient solutionscontaining either NH4+ or NO3 as nitrogen source wasallowed to assimilate [1-14C]- or [2-14C]glycollate during a20 min period in darkness or in light. The incorporation ofradioactivity into water-soluble metabolites, the insolublefraction, and into the CO2 released was measured. In additionthe extractable activity of phosphoenolpyruvate carboxylasewas determined. During the metabolism of [2-14C]glycollate in darkness, as wellas in the light, NH4+ grown plants evolved more 14CO2 than NO3grown plants. Formate was labelled only from [2-14C]glycollateand in NH4+ grown plants it was significantly less labelledin light than in darkness. In NO3 grown plants formateshowed similar radioactivity after dark and light labelling.The radioactivity in glycine was little influenced by the nitrogensource. Amounts of radioactivity in serine implied that thefurther metabolism of serine was reduced in darkness comparedwith its metabolism in the light under both nitrogen regimes.In illuminated NH4+ plants, serine was labelled through a pathwaystarting from phosphoglycerate. After [1-14C]glycollate feedingNH4+ grown plants contained markedly more radioactive aspartateand malate than NO3 plants indicating a stimulated phosphoenolpyruvatecarboxylation in plants grown on NH4+. Key words: Photorespiration, glycollate, nitrogen, Lemna  相似文献   

13.
Barley (Hordeum vulgare L., cvs Golf, Mette, and Laevigatum)was grown under nitrogen limitation in solution culture untilnear maturity. Three different nitrogen addition regimes wereused: in the ‘HN’ culture the relative rate of nitrate-Naddition (RA) was 0·08 d–1 until day 48 and thendecreased stepwise to, finally, 0·005 d–1 duringgrain-filling; the ‘LN’ culture received 45% ofthe nitrogen added in HN; the ‘CN’ culture was maintainedat RA 0·0375 d–1 throughout. Kinetics of net nitrateuptake were measured during ontogeny at 30 to 150 mmol m–3external nitrate. Vmax (which is argued to reflect the maximuminflux rate in these plants) declined with age in both HN andLN cultures. A pronounced transient drop was observed just beforeanthesis, which correlated in time with a peak in root nitrateconcentration. Similar, but less pronounced, trends were observedin CN. The relative Vmax (unit nitrogen taken up per unit nitrogenin plants and day) in all three cultures declined from 1·3–2·3d–1 during vegetative growth to 0·1–0·7d–1 during generative growth. These values are in HN andLN cultures 15- to more than 100-fold in excess of the demandset by growth rates throughout ontogeny. Predicted balancingnitrate concentrations (defined as the nitrate concentrationrequired to support the observed rate of growth) were below6·0 mmol m–3 in HN and LN cultures before anthesisand then decreased during ontogeny. In CN cultures the balancingnitrate concentration increased during grain-filling. Apartfrom the transient decline during anthesis, most of the effectof ageing on relative Vmax can be explained in terms of reducedcontribution of roots to total biomass (R:T). The loss in uptakeper unit root weight is largely compensated for by the declinewith time in average tissue nitrogen concentrations. The quantitativerelationships between relative Vmax and R:T in ageing plantsare similar to those observed for vegetative plants culturedat different RAs. The data support the contention that the capacity for nitrateacquisition in N-limited plants is under general growth control,rather than controlled by specific regulation of the biochemicalpathway of nitrate assimilation. Key words: Barley, nitrogen concentration, root: total plant biomass ratio, Vmax  相似文献   

14.
The addition of Braun and Wood's inorganic supplements (845mg l–1 KCl, 1800 mgl–1 NaNO3, 300 mg l–1 NaH2PO4.2H2O,790 mg l–1 (NH4)2SO4) to White's medium caused markedincreases in the growth of normal tissues of Helianthus annuus,Nicotiana rustica, Daucus carota, and Vinca rosea and crown-galltumour tissues of H. annuus. However, no evidence was obtainedwhich suggested that the presence of these extra salts markedlyinfluenced the essential requirements of normal callus for auxinsand kinetin. In contrast their presence significantly influencedthe hormonal requirements of certain habituated cultures ofH. annuus and V. rosea. These habituated cultures had specificauxin requirements on White's medium while either an auxin orkinetin was sufficient on high-salts medium. These results arediscussed in relation to previous reports which suggested thatthe biosyntheses of auxins and other growth factors in normaland crown-gall cultures are specifically activated by certaininorganic ions.  相似文献   

15.
From homogenates prepared from surface-sterilized nodules ofseedlings of Casuarina cunninghamiana grown aeroponically, astrain of Frankia designated HFPCc13 was isolated and has beengrown in pure filamentous culture in a defined synthetic nutrientmedium. Vesicle and sporangium formation can be induced by removalof combined nitrogen from the medium.Frankia strain HFPCc13nodulates young seedlings of C. cunninghamiana and C. equisetifoliawithin three weeks of inoculation with an optimum root mediumpH of 6–7 for nodulation and optimum temperature of 30–35°C. The presence of combined nitrogen in the root mediuminhibits nodulation with NH4+ more inhibitory than NO3.Frankia HFPCc13 does not nodulate Allocasuarina species withinthe same family nor several other possible actinorhizal plantstested. Thus this strain is quite precise in its host specificity.The rate of acetylene reduction was greater in C. cunninghamianathan the closely related species C. equisetifolia. In neitherof these host species were vesicles observed to occur withinthe infected root nodules which had been demonstrated to beactively fixing dinitrogen. Root nodules were shown to be activein acetylene reduction over a range of O2 concentration in thegaseous environment with an optimum at about 20 per cent O2,the ambient PO2 of the air. The mechanism(s) for oxygen protectionof nitrogenase within the filamentous form of Frankia withinthese nodules remains to be explained. Casuarina, Frankia, nodulation, nitrogen fixation  相似文献   

16.
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (If)/neuronal (Ih) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and Ih channels in neurons. This raises the possibility of Ca2+ permeation in If, the Ih counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca2+ signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by If in rat ventricular myocytes. We observed Ca2+ influx when HCN/If channels were activated. Ca2+ influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an If channel blocker, inhibited If and Ca2+ influx at the same time. Quantitative analysis revealed that Ca2+ flux contributed to 0.5% of current produced by the HCN2 channel or If. The associated increase in Ca2+ influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which If current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca2+ chelator), preactivation of If channels significantly reduced the action potential duration, and the effect was blocked by another selective If channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of If channels had no effects on action potential duration. Our data extend our previous discovery of Ca2+ influx in Ih channels in neurons to If channels in cardiac myocytes. calcium ion flux; hyperpolarization-activated, cyclic nucleotide-gated/cardiac time- and volume-dependent cation current channels  相似文献   

17.
Growth and nitrate uptake kinetics in vegetatively growing barley(Hordeum vulgare L., cvs Laevigatum, Golf, and Mette) were investigatedin solution culture under long-term limitations of externalnitrogen availability. Nitrate was fed to the cultures at relativeaddition rates (RA) ranging from 0.02 to 0.2 d–1. Therelative growth rate (RG, calculated for total plant dry weight)correlated well with RA in the range 0.02 to 0.07 d–1.In the RA range from 0.07 to 0.2 d–1 RG continued to increase,but an increasing fraction of nitrogen, added and absorbed,was apparently stored rather than used for structural growth.The RG of the roots was less affected by RA. Vmax, for net nitrateuptake increased with RA up to 0.11 d–1, but decreasedat higher RA. The decline in Vmax coincided with a build-upof nitrate stores in both roots and shoots. Vmax, expressedper unit nitrogen in the plants (the relative Vmax, was higherthan required for maintenance of growth (up to 30-fold) at lowRA, whereas at higher RA the relative Vmax decreased. Kineticpredictions of steady-state external nitrate concentrationsduring N-limited growth ranged from 0.2 to 5.0 mmol m–3over the RG range 0.02 to 0.11 d–1. It is suggested thatthe nitrate uptake system is not under specific regulation atlow RA, but co-ordinated with root protein synthesis and growthin general. At RA higher than 0.11 d–1, however, specificregulation of nitrate uptake, possibly via root nitrate pools,become important. The three cultivars showed very similar growthand nitrate uptake characteristics. Key words: Barley, growth, nitrogen limitation, nitrate uptake, kinetics  相似文献   

18.
Cultures of water fern Azolla pinnata R. Br. exposed for 1 weekto either 30, 50 or 80 nl l-1 O3 showed significant reductionsin rates of growth and N2 fixation, and had fewer heterocysts.Although the levels of glutamine synthetase (GS) and glutamatedehydrogenase (GDH) activity were decreased by low concentrationsof O3 exposures (30 or 50 nl l-1), significant increases inlevels of the same enzymes were caused by higher concentrationsof O3 (80 nl l-1). Increased levels of total protein, polyamines(putrescine and spermidine), and the xanthophyll-cycle precursorof abscisic acid (ABA), violaxanthin, were also found with higherlevels of O3 (80 nl l-1). Levels of ABA itself were significantlyincreased by low level O3 fumigation (30 nl l-1) but significantlydecreased by exposure to 80 nl l-1 O3. This may indicate thathigher levels of atmospheric O3 inhibit the final stages ofABA biosynthesis from violaxanthin.Copyright 1994, 1999 AcademicPress Abscisic acid, nitrogen assimilation, nitrogen fixation, ozone pollution, polyamines, violaxanthin  相似文献   

19.
Uptake capabilities for ammonium (NH4+) and urea by diatoms(Thalassiosira pseudonana and Skeletonema costatum) growingon oxidized forms of nitrogen were studied in short-term uptakeexperiments. Even when nutrient-saturated, an enhanced uptakecapability not coupled with the growth rate was present forNH4+ and urea. No such enhanced uptake ability was seen forNO2 or NO3 under either nutrient-saturated ornutrient-depleted conditions. The presence of NH4+ decreasedthe enhanced ability to take up urea, but the urea uptake ratein 5 min incubations remained greater than the growth rate evenwhen NH4+ was present.  相似文献   

20.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号