首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregated β-amyloid (Aβ) plays crucial roles in Alzheimer's disease (AD) pathogenesis, therefore blockade of Aβ aggregation is considered as a potential therapeutic target. We designed and synthesized small molecules to reduce Aβ-induced cytotoxicity by inhibiting Aβ aggregation. The small molecules were screened via ThT, MTT, and cell-based cytotoxicity assay (Aβ burden assay). Selected compounds 1c, 1d, 1e, and 1f were then investigated by evaluating their effects on cognitive impairment of acute AD mice model. Learning and memory dysfunction by injection of Aβ(1-42) was recovered by administration of these molecules. Especially, 1d showed the best recovery activity in Y-maze task, object recognition task, and passive avoidance task with dose dependent manner. These results suggest that 1d has high potential as a therapeutic agent for AD.  相似文献   

2.
Genetic and biochemical studies suggest that Alzheimer's disease (AD) is caused by a series of events initiated by the production and subsequent aggregation of the Alzheimer's amyloid β peptide (Aβ), the so‐called amyloid cascade hypothesis. Thus, a logical approach to treating AD is the development of small molecule inhibitors that either block the proteases that generate Aβ from its precursor (β‐ and γ‐secretases) or interrupt and/or reverse Aβ aggregation. To identify potent inhibitors of Aβ aggregation, we have developed a high‐throughput screen based on an earlier selection that effectively paired the folding quality control feature of the Escherichia coli Tat protein export system with aggregation of the 42‐residue AD pathogenesis effecter Aβ42. Specifically, a tripartite fusion between the Tat‐dependent export signal ssTorA, the Aβ42 peptide and the β‐lactamase (Bla) reporter enzyme was found to be export incompetent due to aggregation of the Aβ42 moiety. Here, we reasoned that small, cell‐permeable molecules that inhibited Aβ42 aggregation would render the ssTorA‐Aβ42‐Bla chimera competent for Tat export to the periplasm where Bla is active against β‐lactam antibiotics such as ampicillin. Using a fluorescence‐based version of our assay, we screened a library of triazine derivatives and isolated four nontoxic, cell‐permeable compounds that promoted efficient Tat‐dependent export of ssTorA‐Aβ42‐Bla. Each of these was subsequently shown to be a bona fide inhibitor of Aβ42 aggregation using a standard thioflavin T fibrillization assay, thereby highlighting the utility of our bacterial assay as a useful screen for antiaggregation factors under physiological conditions.  相似文献   

3.
Accumulation of amyloid β-protein (Aβ) in neurons has been demonstrated to precede its formation as amyloid plaques in the extracellular space in Alzheimer's disease (AD) patients. Consequently, intraneuronal Aβ accumulation is thought to be a critical first step in the fatal cascade of events that leads to neuronal degeneration in AD. Understanding the structural basis of neuronal binding and uptake of Aβ might lead to potential therapeutic targets that could block this binding and the subsequent neurodegeneration that leads to the pathogenesis of AD. Previously, we demonstrated that mutation of the two adjacent histidine residues of Aβ40 (H13,14G) resulted in a significant decrease in its level of binding to PC12 cells and mouse cortical/hippocampal neurons. We now demonstrate that the weakened neuronal binding follows the mutation order of H13G < H14G < H13,14G, which suggests that the primary domain for neuronal binding of Aβ40 involves histidine at position 13. A novel APP mutation (E693Δ) that produced a variant Aβ lacking glutamate 22 (E22Δ) in Japanese pedigrees was recently identified to have AD-type dementia without amyloid plaque formation but with extensive intraneuronal Aβ in transfected cells and transgenic mice expressing this deletion. Deletion of glutamate 22 of Aβ40 resulted in a 6-fold enhancement of PC12 neuronal binding that was not decreased by the H13G mutation. The dose-dependent enhanced binding of E22Δ explains the high level of intraneuronal Aβ seen in this pedigree. Fluorescence anisotropy experiments at room temperature showed very rapid aggregation with increased tyrosine rigidity of Aβ39E22Δ, Aβ41E22Δ, and Aβ42 but not Aβ40. This rigidity was decreased but not eliminated by prior treatment with dimethyl sulfoxide. Surprisingly, all peptides showed an aggregated state when evaluated by transmission electron microscopy, with Aβ39E22Δ having early stage fibrils, which was also verified by atomic force microscopy. This aggregation was not affected by centrifugation or pretreatment with organic solvents. The enhanced neuronal binding of Aβ, therefore, results from aggregate binding to neurons, which requires H13 for Aβ40 but not for E22Δ or Aβ42. These latter proteins display increased tyrosine rigidity that likely masks the H13 residue, or alternatively, the H13 residue is not required for neuronal binding of these proteins as it is for Aβ40. Late state fibrils also showed enhanced neuronal binding for E22Δ but not Aβ40 with subsequent intraneuronal accumulation in lysosomes. This suggests that there are multiple pathways of binding/internalization for the different Aβ proteins and their aggregation states or fibrillar structure.  相似文献   

4.
β-Amyloid (Aβ), a peptide generated from the amyloid precursor protein, is widely believed to underlie the pathophysiology of Alzheimer disease (AD). Emerging evidences suggest that soluble Aβ oligomers adversely affect synaptic function, leading to cognitive failure associated with AD. The Aβ-induced synaptic dysfunction has been attributed to the synaptic removal of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs). However, the molecular mechanisms underlying the loss of AMPAR induced by Aβ at synapses are largely unknown. In this study we have examined the effect of Aβ oligomers on phosphorylated GluA1 at serine 845, a residue that plays an essential role in the trafficking of AMPARs toward extrasynaptic sites and the subsequent delivery to synapses during synaptic plasticity events. We found that Aβ oligomers reduce basal levels of Ser-845 phosphorylation and surface expression of AMPARs affecting AMPAR subunit composition. Aβ-induced GluA1 dephosphorylation and reduced receptor surface levels are mediated by an increase in calcium influx into neurons through ionotropic glutamate receptors and activation of the calcium-dependent phosphatase calcineurin. Moreover, Aβ oligomers block the extrasynaptic delivery of AMPARs induced by chemical synaptic potentiation. In addition, reduced levels of total and phosphorylated GluA1 are associated with initial spatial memory deficits in a transgenic mouse model of AD. These findings indicate that Aβ oligomers could act as a synaptic depressor affecting the mechanisms involved in the targeting of AMPARs to the synapses during early stages of the disease.  相似文献   

5.
β-Amyloid peptide (Aβ), the primary protein component in senile plaques associated with Alzheimer's disease (AD), has been implicated in neurotoxicity associated with AD. Previous studies have shown that the Aβ-neuronal membrane interaction plays a role in the mechanism of Aβ toxicity. More specifically, it is thought that Aβ interacts with ganglioside rich and sialic acid rich regions of cell surfaces. In light of such evidence, we have used a number of different sialic acid compounds of different valency or number of sialic acid moieties per molecule to attenuate Aβ toxicity in a cell culture model. In this work, we proposed various mathematical models of Aβ interaction with both the cell membrane and with the multivalent sialic acid compounds, designed to act as membrane mimics. These models allow us to explore the mechanism of action of this class of sialic acid membrane mimics in attenuating the toxicity of Aβ. The mathematical models, when compared with experimental data, facilitate the discrimination between different modes of action of these materials. Understanding the mechanism of action of Aβ toxicity inhibitors should provide insight into the design of the next generation of molecules that could be used to prevent Aβ toxicity associated with AD.  相似文献   

6.
Accumulation of amyloid β (Aβ) is a major hallmark in Alzheimer's disease (AD). Bone marrow derived monocytic cells (BMM) have been shown to reduce Aβ burden in mouse models of AD, alleviating the AD pathology. BMM have been shown to be more efficient phagocytes in AD than the endogenous brain microglia. Because BMM have a natural tendency to infiltrate into the injured area, they could be regarded as optimal candidates for cell-based therapy in AD. In this study, we describe a method to obtain monocytic cells from BM-derived haematopoietic stem cells (HSC). Mouse or human HSC were isolated and differentiated in the presence of macrophage colony stimulating factor (MCSF). The cells were characterized by assessing the expression profile of monocyte markers and cytokine response to inflammatory stimulus. The phagocytic capacity was determined with Aβ uptake assay in vitro and Aβ degradation assay of natively formed Aβ deposits ex vivo and in a transgenic APdE9 mouse model of AD in vivo. HSC were lentivirally transduced with enhanced green fluorescent protein (eGFP) to determine the effect of gene modification on the potential of HSC-derived cells for therapeutic purposes. HSC-derived monocytic cells (HSCM) displayed inflammatory responses comparable to microglia and peripheral monocytes. We also show that HSCM contributed to Aβ reduction and could be genetically modified without compromising their function. These monocytic cells could be obtained from human BM or mobilized peripheral blood HSC, indicating a potential therapeutic relevance for AD.  相似文献   

7.
Amyloid-β peptide (Aβ) is the amyloid component of senile plaques in Alzheimer disease (AD) brains. Recently a soluble oliomeric form of Aβ in Aβ precursor protein transgenic mouse brains and AD brains was identified as a potential causative molecule for memory impairment, suggesting that soluble Aβ oligomers cause neurodegeneration in AD. Further characterization of this species has been hampered, however, because the concentrations are quite small and it is difficult to monitor Aβ oligomers specifically. Here we developed a novel method for monitoring Aβ oligomers using a split-luciferase complementation assay. In this assay, the N- and C-terminal fragments of Gaussia luciferase (Gluc) are fused separately to Aβ. We found that conditioned media from both N- and C-terminal fragments of Gluc-tagged Aβ1-42 doubly transfected HEK293 cells showed strong luminescence. We used gel filtration analyses to analyze the size of oligomers formed by the luciferase complementation assay, and found that it matched closely with oligomers formed by endogenous Aβ in Tg2576 neurons. Large oligomers (24-36-mers), 8-mers, trimers, and dimers predominate. In both systems, Aβ formed oligomers intracellularly, which then appear to be secreted as oligomers. We then evaluated several factors that might impact oligomer formation. The level of oligomerization of Aβ1-40 was similar to that of Aβ1-42. Homodimers formed more readily than heterodimers. The level of oligomerization of murine Aβ1-42 was similar to that of human Aβ1-42. As expected, the familial AD-linked Arctic mutation (E22G) significantly enhanced oligomer formation. These data suggest that Gluc-tagged Aβ enables the analysis of Aβ oligomers.  相似文献   

8.
The aggregation (fibril formation) of amyloid β-protein (Aβ) is considered to be a crucial step in the etiology of Alzheimer's disease (AD). The inhibition of Aβ aggregation and/or decomposition of fibrils formed in aqueous solution by small compounds have been studied extensively for the prevention and treatment of AD. However, recent studies suggest that Aβ aggregation also occurs in lipid rafts mediated by a cluster of monosialoganglioside GM1. This study examined the effects of representative compounds on Aβ aggregation and fibril destabilization in the presence of GM1-containing raft-like liposomes. Among the compounds tested, nordihydroguaiaretic acid (NDGA), rifampicin (RIF), tannic acid (TA), and quercetin (QUE) showed strong fibrillization inhibitory activity. NDGA and RIF inhibited the binding of Aβ to GM1 liposomes by competitively binding to the membranes and/or direct interaction with Aβ in solution, thus at least partly preventing fibrils from forming. Coincubation of Aβ with NDGA, RIF, and QUE in the presence of GM1 liposomes resulted in elongate particles, whereas the presence of TA yielded protofibrillar structures. TA and RIF also destabilized fibrils. The most potent NDGA prevented Aβ-induced toxicity in PC12 cells by inhibiting Aβ accumulation. Furthermore, a comparison of the inhibitory effects of various compounds between aqueous-phase and GM1-mediated aggregation of Aβ suggested that the two aggregation processes are not identical.  相似文献   

9.
Lipid oxidative damage and amyloid β (Aβ) misfolding contribute to Alzheimer's disease (AD) pathology. Thus, the prevention of oxidative damage and Aβ misfolding are attractive targets for drug discovery. At present, no AD drugs approved by the Food and Drug Administration (FDA) prevent or halt disease progression. Hydralazine, a smooth muscle relaxant, is a potential drug candidate for AD drug therapy as it reduces Aβ production and prevents oxidative damage via its antioxidant hydrazide group. We evaluated the efficacy of hydralazine, and related hydrazides, in reducing (1) Aβ misfolding and (2) Aβ protein modification by the reactive lipid 4-hydroxy-2-nonenal (HNE) using transmission electron microscopy and Western blotting. While hydralazine did not prevent Aβ aggregation as measured using the protease protection assay, there were more oligomeric species observed by electron microscopy. Hydralazine prevented lipid modification of Aβ, and Aβ was used as a proxy for classes of proteins which either misfold or are modified by HNE. All of the other hydrazides prevented lipid modification of Aβ and also did not prevent Aβ aggregation. Surprisingly, a few of the compounds, carbazochrome and niclosamide, appeared to augment Aβ formation. Thus, hydrazides reduced lipid oxidative damage, and hydralazine additionally reduced Aβ misfolding. While hydralazine would require specific chemical modifications for use as an AD therapeutic itself (to improve blood brain barrier permeability, reduce vasoactive side effects, and optimization for amyloid inhibition), this study suggests its potential merit for further AD drug development.  相似文献   

10.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Beta-amyloid (Aβ) peptides are considered to play a major role in the pathogenesis of Alzheimer's disease (AD) and compounds that can prevent pathways of Aβ-induced neurotoxicity may be potential therapeutic agents for treatment of AD. This study examined the hypothesis that thymoquinone (TQ) would reduce oxidative stress and mitochondrial dysfunction in differentiated pheochromocytoma (PC 12) cells exposed to Aβ fragment 25-35 (Aβ(25-35)). To test this hypothesis, Aβ was used to induce an in vitro model of AD in differentiated PC 12 cell line of rat. After 24?h of exposure with Aβ(25-35), a significant reduction in cell viability and mitochondrial membrane potential (MMP) was observed. In addition, a significant elevation in the TBARS content and nitric oxide (NO) and activity of acetylcholine esterase (AChE) was observed which was restored significantly by TQ pretreatment. Furthermore, TQ also ameliorated glutathione and its dependent enzymes (glutathione peroxidase, glutathione reductase) which were depleted by Aβ(25-35) in PC 12 cells. These results were supported by the immunocytochemical finding that has shown protection of cells by TQ from noxious effects of Aβ(25-35). These results indicate that TQ holds potential for neuroprotection and may be a promising approach for the treatment of neurodegenerative disorders including AD.  相似文献   

12.
Alzheimer's disease (AD) is characterized by the abnormal aggregation of amyloid β peptide (Aβ) into extracellular fibrillar deposits known as amyloid plaque. Inhibition of Aβ aggregation is therefore viewed as a potential method to halt or slow the progression of AD. It is reported that silibinin (silybin), a flavonoid derived from the herb milk thistle (Silybum marianum), attenuates cognitive deficits induced by Aβ25-35 peptide and methamphetamine. However, it remains unclear whether silibinin interacts with Aβ peptide directly and decreases Aβ peptide-induced neurotoxicity. In the present study, we identified, through employing a ThT assay and electron microscopic imaging that silibinin also appears to act as a novel inhibitor of Aβ aggregation and this effect showed dose-dependency. We also show that silibinin prevented SH-SY5Y cells from injuries caused by Aβ(1-42)-induced oxidative stress by decreasing H(2)O(2) production in Aβ(1-42)-stressed neurons. Taken together, these results indicate that silibinin may be a novel therapeutic agent for the treatment of AD.  相似文献   

13.
BackgroundRosmarinus officinalis, commonly known as rosemary, is a medicinal herb that presents significant biological properties such as antimicrobial, antioxidant, anti-inflammatory, anti-diabetic and anti-depressant activities. Recent findings correlate impaired adult neurogenesis, which is crucial for the maintenance of synaptic plasticity and hippocampal functioning, synaptic regulation with the pathological hallmarks of Alzheimer's disease (AD). These observations call for the need to developing compounds that promote neurogenesis and alleviates deficits in cognition and synaptic regulation.Purpose and study designThe present study was conducted to determine the proneurogenic effects of R. officinalis and its active compounds (ursolic acid and rosmarinic acid) in comparison to Donepezil in an Aβ1-42-induced mouse model of AD.MethodsBALB/c mice were divided into ten groups. Half were injected with Aβ1-42 in the hippocampus through stereotaxic surgery to generate the disease groups. The other half received control injections. Each set of five groups were administered orally with vehicle, an ethanolic extract of R. officinalis, ursolic acid, rosmarinic acid or donepezil. Behavior analysis included the Morris water maze test, the novel object recognition test and the Elevated plus maze. The mice were then sacrificed and the hippocampal tissue was processed for immunohistochemistry and gene expression analysis.ResultsThe results show a protective effect by rosmarinic acid and ursolic acid in reversing the deficits in spatial and recognition memory as well as changes in anxiety induced by Aβ1-42. The neuronal density and the expression levels of neurogenic (Ki67, NeuN and DCX) and synaptic (Syn I, II, III, Synaptophysin and PSD-95) markers were also normalized upon treatment with rosmarinic and ursolic acid.ConclusionOur findings indicate the potential of R. officinalis and its active compounds as therapeutic agents against Aβ1-42-induced neurotoxicity in AD.  相似文献   

14.
The amyloid-beta peptide (Aβ) cascade hypothesis posits that Aβ accumulation is the fundamental initiator of Alzheimer's disease (AD), and mounting evidence suggests that impaired Aβ clearance rather than its overproduction is the major pathogenic event for AD. Recent genetic studies have identified cluster of differentiation 33 (CD33) as a strong genetic locus linked to AD. As a type I transmembrane protein, CD33 belongs to the sialic acid-binding immunoglobulin-like lectins, mediating the cell–cell interaction and inhibiting normal functions of immune cells. In the brain, CD33 is mainly expressed on microglial cells. The level of CD33 was found to be increased in the AD brain, which positively correlated with amyloid plaque burden and disease severity. More importantly, CD33 led to the impairment of microglia-mediated clearance of Aβ, which resulted in the formation of amyloid plaques in the brain. In this article, we review the recent epidemiological findings of CD33 that related with AD and discuss the levels and pathogenic roles of CD33 in this disease. Based on the contributing effects of CD33 in AD pathogenesis, targeting CD33 may provide new opportunities for AD therapeutic strategies.  相似文献   

15.
Cerebral deposition of amyloid β protein (Aβ) is an invariant feature of Alzheimer disease (AD), and epidemiological evidence suggests that moderate consumption of foods enriched with phenolic compounds reduce the incidence of AD. We reported previously that the phenolic compounds myricetin (Myr) and rosmarinic acid (RA) inhibited Aβ aggregation in vitro and in vivo. To elucidate a mechanistic basis for these results, we analyzed the effects of five phenolic compounds in the Aβ aggregation process and in oligomer-induced synaptic toxicities. We now report that the phenolic compounds blocked Aβ oligomerization, and Myr promoted significant NMR chemical shift changes of monomeric Aβ. Both Myr and RA reduced cellular toxicity and synaptic dysfunction of the Aβ oligomers. These results suggest that Myr and RA may play key roles in blocking the toxicity and early assembly processes associated with Aβ through different binding.  相似文献   

16.
Alzheimer’s disease (AD), a neurodegenerative disorder, is characterized by aggregation of amyloid β-protein (Aβ). Aβ aggregates through β-sheet formation and induces cytotoxicity against neuronal cells. Inhibition of Aβ aggregation by naturally occurring compounds is thus a promising strategy for the treatment of AD. We have already reported that caffeoylquinic acids and phenylethanoid glycosides, which possess two or more catechol moieties, strongly inhibited Aβ aggregation. Clovamide (1) containing two catechol moieties, isolated from cacao beans (Theobroma cacao L.), is believed to exhibit preventive effects on Aβ aggregation. To investigate the structure-activity relationship of clovamide (1) for the inhibition of Aβ aggregation, we synthesized 1 and related compounds 2–11 through reaction between l-DOPA, d-DOPA, l-tyrosine, or l-phenylalanine and caffeic acid, p-coumaric acid, or cinnamic acid, and compounds 12 and 13 were derived from 1. Among tested compounds 1–13, those containing one or two catechol moieties exhibited potent anti-aggregation activity, whereas the non-catechol-type related compounds showed little or no activity. This suggests that at least one catechol moiety is essential for inhibition of Aβ42 aggregation, and this activity increases depending on the number of catechol moieties. Consequently, clovamide (1) and its related compounds may be a promising therapeutic option for inhibiting Aβ-mediated pathology in AD.  相似文献   

17.
A series of thiazole derivatives were designed, and prepared to develop RAGE antagonist for the treatment of Alzheimer’s disease (AD). SAR studies were performed to optimize inhibitory activity on Aβ-RAGE binding. SAR studies showed that introducing an amino group at part A was essential for inhibitory activity on Aβ-RAGE binding. Compounds selected from Aβ-RAGE binding screening displayed inhibitory activity on Aβ transport across BBB. They also showed inhibitory activity against Aβ-induced NF-κB activation. These results indicated that our derivatives had a potential as therapeutic agent for the treatment of AD.  相似文献   

18.
Smaller, soluble oligomers of β-amyloid (Aβ) play a critical role in the pathogenesis of Alzheimer’s disease (AD). Selective inhibition of Aβ oligomer formation provides an optimum target for AD therapy. Some polyphenols have potent anti-amyloidogenic activities and protect against Aβ neurotoxicity. Here, we tested the effects of ellagic acid (EA), a polyphenolic compound, on Aβ42 aggregation and neurotoxicity in vitro. EA promoted Aβ fibril formation and significant oligomer loss, contrary to previous results that polyphenols inhibited Aβ aggregation. The results of transmission electron microscopy (TEM) and Western blot displayed more fibrils in Aβ42 samples co-incubated with EA in earlier phases of aggregation. Consistent with the hypothesis that plaque formation may represent a protective mechanism in which the body sequesters toxic Aβ aggregates to render them harmless, our MTT results showed that EA could significantly reduce Aβ42-induced neurotoxicity toward SH-SY5Y cells. Taken together, our results suggest that EA, an active ingredient in many fruits and nuts, may have therapeutic potential in AD.  相似文献   

19.
Amyloid-β oligomers (Aβo) are the most pathologically relevant Aβ species in Alzheimer's disease (AD), because they induce early synaptic dysfunction that leads to learning and memory impairments. In contrast, increasing VEGF (Vascular Endothelial Growth Factor) brain levels have been shown to improve learning and memory processes, and to alleviate Aβ-mediated synapse dysfunction. Here, we designed a new peptide, the blocking peptide (BP), which is derived from an Aβo-targeted domain of the VEGF protein, and investigated its effect on Aβ-associated toxicity. Using a combination of biochemical, 3D and ultrastructural imaging, and electrophysiological approaches, we demonstrated that BP strongly interacts with Aβo and blocks Aβ fibrillar aggregation process, leading to the formation of Aβ amorphous aggregates. BP further impedes the formation of structured Aβo and prevents their pathogenic binding to synapses. Importantly, acute BP treatment successfully rescues long-term potentiation (LTP) in the APP/PS1 mouse model of AD, at an age when LTP is highly impaired in hippocampal slices. Moreover, BP is also able to block the interaction between Aβo and VEGF, which suggests a dual mechanism aimed at both trapping Aβo and releasing VEGF to alleviate Aβo-induced synaptic damage. Our findings provide evidence for a neutralizing effect of the BP on Aβ aggregation process and pathogenic action, highlighting a potential new therapeutic strategy.  相似文献   

20.
Alzheimer's disease (AD) is the most common dementia, characterized by pathological accumulation of β-amyloid (Aβ) and hyperphosphorylation of tau protein, together with a damaging chronic inflammation. The lack of effective treatments urgently warrants new therapeutic strategies. Resolution of inflammation, associated with beneficial and regenerative activities, is mediated by specialized pro-resolving lipid mediators (SPMs) including maresin 1 (MaR1). Decreased levels of MaR1 have been observed in AD brains. However, the pro-resolving role of MaR1 in AD has not been fully investigated. In the present study, human monocyte-derived microglia (MdM) and a differentiated human monocyte cell line (THP-1 cells) exposed to Aβ were used as models of AD neuroinflammation. We have studied the potential of MaR1 to inhibit pro-inflammatory activation of Aβ and assessed its ability to stimulate phagocytosis of Aβ42. MaR1 inhibited the Aβ42-induced increase in cytokine secretion and stimulated the uptake of Aβ42 in both MdM and differentiated THP-1 cells. MaR1 was also found to decrease chemokine secretion and reduce the associated increase in the activation marker CD40. Activation of kinases involved in transduction of inflammation was not affected by MaR1, but the activity of nuclear factor (NF)-κB was decreased. Our data show that MaR1 exerts effects that indicate a pro-resolving role in the context of AD and thus presents itself as a potential therapeutic target for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号