首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of the normal cellular prion protein (PrP(C)) into the abnormal scrapie isoform (PrP(Sc)) is a key feature of prion diseases. The pathogenic mechanisms and the subcellular sites of the conversion are complex and not completely understood. In particular, little is known on the role of the early compartment of the secretory pathway in the processing of PrP(C) and in the pathogenesis of prion diseases. In order to interfere with the intracellular traffic of endogenous PrP(C) we have generated two anti-prion single chain antibody fragments (scFv) directed against different epitopes, each fragment tagged either with a secretory leader or with the ER retention signal KDEL. The stable expression of these constructs in PC12 cells allowed us to study their specific effects on the synthesis, maturation, and processing of endogenous PrP(C) and on PrP(Sc) formation. We found that ER-targeted anti-prion scFvs retain PrP(C) in the ER and inhibit its translocation to the cell surface. Retention in the ER strongly affects the maturation and glycosylation state of PrP(C), with the appearance of a new aberrant endo-H sensitive glycosylated species. Interestingly, ER-trapped PrP(C) acquires detergent insolubility and proteinase K resistance. Furthermore, we show that ER-targeted anti-prion antibodies prevent PrP(Sc) accumulation in nerve growth factor-differentiated PC12 cells, providing a new tool to study the molecular pathology of prion diseases.  相似文献   

2.
The pathogenic mechanisms leading from mutations in the prion protein (PrP) gene to infectious disease are not understood. To investigate the possibility that cellular processing of mutant prion protein may contribute to the formation of infectious particles, a mouse PrP model system has been established using the green fluorescent protein. Three novel PrP mutants were examined employing this model system and compared with wild type as well as known mutant PrPs. Two Creutzfeldt-Jakob disease-associated PrP mutants, PrP T188K and PrP T188R, revealed a secretory pathway to the cell membrane and PrP(Sc)-like properties, i.e. enhanced proteinase K resistance and detergent insolubility similar to other mutant PrPs associated with familial prion diseases. Moreover, a recently described disease-related truncated PrP mutant, PrP Q160(Stop), showed an almost exclusive localization in the nucleus and a catabolism along the proteasomal pathway. Therefore, various distinct pathological mechanisms may cause prion diseases, and aberrant cellular processing may be included in the pathogenesis of prion diseases.  相似文献   

3.
Failure to promptly dispose of undesirable proteins is associated with numerous diseases. In the case of cellular prion protein (PrP), inhibition of the proteasome pathway can generate a highly aggregation-prone, cytotoxic form of PrP implicated in neurodegeneration. However, the predominant mechanisms that result in delivery of PrP, ordinarily targeted to the secretory pathway, to cytosolic proteasomes have been unclear. By accurately measuring the in vivo fidelity of protein translocation into the endoplasmic reticulum (ER), we reveal a slight inefficiency in PrP signal sequence function that generates proteasomally degraded cytosolic PrP. Attenuating this source of cytosolic PrP completely eliminates the dependence on proteasomes for PrP degradation. This allows cells to tolerate both higher expression levels and decreased proteasomal capacity without succumbing to the adverse consequences of misfolded PrP. Thus, the generation of potentially toxic cytosolic PrP is controlled primarily during its initial translocation into the ER. These results suggest that a substantial proportion of the cell's constitutive proteasomal burden may consist of proteins that, like PrP, fail to cotranslationally enter the secretory pathway with high fidelity.  相似文献   

4.
Transmissible Spongiform Encephalopathies or prion related disorders are fatal and infectious neurodegenerative diseases characterized by extensive neuronal apoptosis and accumulation of a misfolded form of the cellular prion protein (PrP), denoted PrP(Sc). Although the mechanism of neurodegeneration and the involvement of PrP(Sc) is far from clear, data indicates that neuronal apoptosis might be related to activation of several signaling pathways, including proteasome dysfunction, alterations in prion maturation pathway and endoplasmic reticulum (ER) stress. In this article we describe recent studies investigating the molecular mechanism of PrP(Sc) neurotoxicity. We propose a model in which the key step in the pathogenesis of prion disorders, independent on their etiology, is the alteration of ER-homeostasis due to drastic modifications of the physicochemical properties of PrP, leading to the activation of ER-dependent signaling pathways that controls cellular survival.  相似文献   

5.
J Tatzelt  S B Prusiner    W J Welch 《The EMBO journal》1996,15(23):6363-6373
The fundamental event in prion diseases involves a conformational change in one or more of the alpha-helices of the cellular prion protein (PrP(C)) as they are converted into beta-sheets during the formation of the pathogenic isoform (PrP(Sc)). Here, we show that exposure of scrapie-infected mouse neuroblastoma (ScN2a) cells to reagents known to stabilize proteins in their native conformation reduced the rate and extent of PrP(Sc) formation. Such reagents include the cellular osmolytes glycerol and trimethylamine N-oxide (TMAO) and the organic solvent dimethylsulfoxide (DMSO), which we refer to as 'chemical chaperones' because of their influence on protein folding. Although the chemical chaperones did not appear to affect the existing population of PrP(Sc) molecules in ScN2a cells, they did interfere with the formation of PrP(Sc) from newly synthesized PrP(C). We suggest that the chemical chaperones act to stabilize the alpha-helical conformation of PrP(C) and thereby prevent the protein from undergoing a conformational change to produce PrP(Sc). These observations provide further support for the idea that prions arise due to a change in protein conformation and reveal potential strategies for preventing PrP(Sc) formation.  相似文献   

6.
There is evidence that prion protein dimers may be involved in the formation of the scrapie prion protein, PrP(Sc), from its normal (cellular) form, PrP(c). Recently, the crystal structure of the human prion protein in a dimeric form was reported. Here we report for the first time the overexpression of a human PrP dimer covalently linked by a FLAG peptide (PrP::FLAG::PrP) in the methylotrophic yeast Pichia pastoris. FLAG-tagged human PrP (aa1-aa253) (huPrP::FLAG) was also expressed in the same system. Treatment with tunicamycin and endoglycosidase H showed that both fusion proteins are expressed as various glycoforms. Both PrP proteins were completely digested by proteinase K (PK), suggesting that the proteins do not have a PrP(Sc) structure and are not infectious. Plasma membrane fractionation revealed that both proteins are transported to the plasma membrane of the cell. The glycosylated proteins might act as powerful tools for crystallization trials, PrP(c)/PrP(Sc) conversion studies and other applications in the life cycle of prions.  相似文献   

7.
Prion diseases are fatal neurodegenerative disorders, and the conformational conversion of normal cellular prion protein (PrP(C)) into its pathogenic, amyloidogenic isoform (PrP(Sc)) is the essential event in the pathogenesis of these diseases. Lactoferrin (LF) is a cationic iron-binding glycoprotein belonging to the transferrin (TF) family, which accumulates in the amyloid deposits in the brain in neurodegenerative disorders, such as Alzheimer's disease and Pick's disease. In the present study, we have examined the effects of LF on PrP(Sc) formation by using cell culture models. Bovine LF inhibited PrP(Sc) accumulation in scrapie-infected cells in a time- and dose-dependent manner, whereas TF was not inhibitory. Bioassays of LF-treated cells demonstrated prolonged incubation periods compared with non-treated cells indicating a reduction of prion infectivity. LF mediated the cell surface retention of PrP(C) by diminishing its internalization and was capable of interacting with PrP(C) in addition to PrP(Sc). Furthermore, LF partially inhibited the formation of protease-resistant PrP as determined by the protein misfolding cyclic amplification assay. Our results suggest that LF has multifunctional antiprion activities.  相似文献   

8.
Aberrant metabolism and conformational alterations of the cellular prion protein (PrP(c)) are the underlying causes of transmissible spongiform encephalopathies in humans and animals. In cells, PrP(c) is modified post-translationally and transported along the secretory pathway to the plasma membrane, where it is attached to the cell surface by a glycosylphosphatidylinositol anchor. In surface biotinylation assays we observed that deletions within the unstructured N terminus of murine PrP(c) led to a significant reduction of internalization of PrP after transfection of murine neuroblastoma cells. Truncation of the entire N terminus most significantly inhibited internalization of PrP(c). The same deletions caused a significant prolongation of cellular half-life of PrP(c) and a delay in the transport through the secretory pathway to the cell surface. There was no difference in the glycosylation kinetics, indicating that all PrP constructs equally passed endoplasmic reticulum-based cellular quality control. Addition of the N terminus of the Xenopus laevis PrP, which does not encode a copper-binding repeat element, to N-terminally truncated mouse PrP restored the wild type phenotype. These results provide deeper insight into the life cycle of the PrP(c), raising the novel possibility of a targeting function of its N-proximal part by interacting with the secretory and the endocytic machinery. They also indicate the conservation of this targeting property in evolution.  相似文献   

9.
During acute stress in the endoplasmic reticulum (ER), mammalian prion protein (PrP) is temporarily prevented from translocation into the ER and instead routed directly for cytosolic degradation. This "pre-emptive" quality control (pQC) system benefits cells by minimizing PrP aggregation in the secretory pathway during ER stress. However, the potential toxicity of cytosolic PrP raised the possibility that persistent pQC of PrP contributes to neurodegeneration in prion diseases. Here, we find evidence of ER stress and decreased translocation of nascent PrP during prion infection. Transgenic mice expressing a PrP variant with reduced translocation at levels expected during ER stress was sufficient to cause several mild age-dependent clinical and histological manifestations of PrP-mediated neurodegeneration. Thus, an ordinarily adaptive quality-control pathway can be contextually detrimental over long time periods. We propose that one mechanism of prion-mediated neurodegeneration involves an indirect ER stress-dependent effect on nascent PrP biosynthesis and metabolism.  相似文献   

10.
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease.  相似文献   

11.
It has been reported that macrophages degrade infectious forms of prion protein (PrP(Sc) ). In order to investigate the mechanisms underlying PrP(Sc) degradation in macrophages, the effects of lysosomal and proteasomal inhibitors on macrophage cell lines which were incubated with scrapie-affected brain homogenate were studied. PrP(Sc) degradation was inhibited in the presence of both proteasomal and lysosomal inhibitors. Indirect fluorescence assays to determine the cellular localization of PrP(Sc) were undertaken. PrP(Sc) colocalized with the lysosomal membrane protein Lamp-1 and ubiquitin, a protein that is related to the proteasome. The present data indicate that macrophages might degrade PrP(Sc) via the lysosomal and proteasomal pathways.  相似文献   

12.
In prion-related encephalopathies, the cellular prion protein (PrP(C)) undergoes a change in conformation to become the scrapie prion protein (PrP(Sc)) which forms infectious deposits in the brain. Conceivably, the conformational transition of PrP(C) to PrP(Sc) might be linked with posttranslational alterations in the covalent structure of a fraction of the PrP molecules. We tested a synthetic peptide corresponding to residues 106-126 of human PrP for the occurrence of spontaneous chemical modifications. The only asparagine residue, Asn108, was deamidated to aspartic acid and isoaspartic acid with a half-life of about 12 days. The same posttranslational modifications were found in recombinant murine full-length protein. On aging, 0.8 mol of isoaspartyl residue per mole of protein was detected by the protein-l-isoaspartyl methyltransferase assay (t(1/2) approximately 30 days). Mass spectrometry and Edman degradation of Lys-C fragments identified Asn108 in the amino-terminal flexible part of the protein to be partially converted to aspartic acid and isoaspartic acid. A second modification was the partial isomerization of Asp226' which is only present in rodents.  相似文献   

13.
Prion diseases are characterized by accumulation of misfolded prion protein (PrP(Sc)), and neuronal death by apoptosis. Here we show that nanomolar concentrations of purified PrP(Sc) from mouse scrapie brain induce apoptosis of N2A neuroblastoma cells. PrP(Sc) toxicity was associated with an increase of intracellular calcium released from endoplasmic reticulum (ER) and up-regulation of several ER chaperones. Caspase-12 activation was detected in cells treated with PrP(Sc), and cellular death was inhibited by overexpression of a catalytic mutant of caspase-12 or an ER-targeted Bcl-2 chimeric protein. Scrapie-infected N2A cells were more susceptible to ER-stress and to PrP(Sc) toxicity than non-infected cells. In scrapie-infected mice a correlation between caspase-12 activation and neuronal loss was observed in histological and biochemical analyses of different brain areas. The extent of prion replication was closely correlated with the up-regulation of ER-stress chaperone proteins. Similar results were observed in humans affected with sporadic and variant Creutzfeldt-Jakob disease, implicating for the first time the caspase-12 dependent pathway in a neurodegenerative disease in vivo, and thus offering novel potential targets for the treatment of prion disorders.  相似文献   

14.
The elusive intermediate on the folding pathway of the prion protein   总被引:1,自引:0,他引:1  
A key molecular event in prion diseases is the conversion of the cellular conformation of the prion protein (PrP(C)) to an altered disease-associated form, generally denoted as scrapie isoform (PrP(Sc)). The molecular details of this conformational transition are not fully understood, but it has been suggested that an intermediate on the folding pathway of PrP(C) may be recruited to form PrP(Sc). In order to investigate the folding pathway of PrP we designed and expressed two mutants, each possessing a single strategically located tryptophan residue. The secondary structure and folding properties of the mutants were examined. Using conventional analyses of folding transition data determined by fluorescence and CD, and novel phase-diagram analyses, we present compelling evidence for the presence of an intermediate species on the folding pathway of PrP. The potential role of this intermediate in prion conversion is discussed.  相似文献   

15.
Prions are defined as infectious agents that comprise only proteins and are responsible for transmissible spongiform encephalopathies (TSEs)--fatal neurodegenerative diseases that affect humans and other mammals and include Creutzfeldt-Jacob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. Prions have been proposed to arise from the conformational conversion of the cellular prion protein PrP(C) to a misfolded form termed PrP(Sc) that precipitates into aggregates and fibrils. The conversion process might be triggered by interaction of the infectious form with the cellular form or it might result from a mutation in the gene encoding PrP(C). Exactly how and where in the cell the interaction and the conversion of PrP(C) to PrP(Sc) occur, however, remain controversial. Recent studies have shed light on the intracellular trafficking of PrP(C), the role of protein mis-sorting and the cellular factors that are thought to be required for the conformational conversion of prion proteins.  相似文献   

16.
Prion diseases are fatal and infectious neurodegenerative disorders characterized by the accumulation of an abnormally folded form of the prion protein (PrP), termed PrP(Sc). Prion replication triggers endoplasmic reticulum (ER) stress, neuronal dysfunction, and apoptosis. In this study we analyze the effect of perturbations in ER homeostasis on PrP biochemical properties and prion replication. ER stress led to the generation of a mis-folded PrP isoform, which is detergent-insoluble and protease-sensitive. To understand the mechanism by which ER stress generates PrP misfolding, we assessed the contribution of different signaling pathways implicated in the unfolded protein response. Expression of a dominant negative form of IRE1 alpha or XBP-1 significantly increased PrP aggregation, whereas overexpression of ATF4 or an active mutant form of XBP-1 and ATF6 had the opposite affect. Analysis of prion replication in vitro revealed that the PrP isoform generated after ER stress is more efficiently converted into PrP(Sc) compared with the protein extracted from untreated cells. These findings indicate that ER-damaged cells might be more susceptible to prion replication. Because PrP(Sc) induces ER stress, our data point to a vicious cycle accelerating prion replication, which may explain the rapid progression of the disease.  相似文献   

17.
Transmissible spongiform encephalopathies form a group of fatal neurodegenerative disorders that have the unique property of being infectious, sporadic, or genetic in origin. Although some doubts remain on the nature of the responsible agent of these diseases, it is clear that a protein called PrP(Sc) (which stands for the scrapie isoform of the prion protein) has a central role in their pathology. PrP(Sc) represents a conformational variant of a normal protein of the host: the cellular isoform of the prion protein, or PrP(C). Compounds such as glycosaminoglycans and Congo red (CR) have been shown to interfere with both in vitro and in vivo PrP(Sc) formation. It was hypothesized that CR acts by overstabilizing the conformation of PrP(Sc) molecules or by modifying trafficking of PrP(C). Using transfected cells expressing 3F4-tagged mouse PrPs, we show here that CR does not interfere with conversion of PrP molecules carrying pathogenic mutations. On the contrary, after incubation with the drug, some of their properties, such as insolubility and protease resistance, are enhanced and are even acquired by the wild-type molecule. This last observation suggests an alternative mechanism of action of CR and leads us to reconsider the relationship between the biochemical properties of PrP and conformational alteration of the protein.  相似文献   

18.
The infectious form of prion protein, PrP(Sc), self-propagates by its conversion of the normal, cellular prion protein molecule PrP(C) to another PrP(Sc) molecule. It has not yet been demonstrated that recombinant prion protein can convert prion protein molecules from PrP(C) to PrP(Sc). Here we show that recombinant hamster prion protein is converted to a second form, PrP(RDX), by a redox process in vitro and that this PrP(RDX) form seeds the conversion of other PrP(C) molecules to the PrP(RDX) form. The converted form shows properties of oligomerization and seeded conversion that are characteristic of PrP(Sc). We also find that the oligomerization can be reversed in vitro. X-ray fiber diffraction suggests an amyloid-like structure for the oligomerized prion protein. A domain-swapping model involving intermolecular disulfide bonds can account for the stability and coexistence of two molecular forms of prion protein and the capacity of the second form for self-propagation.  相似文献   

19.
After signal sequence-dependent targeting to the endoplasmic reticulum (ER), prion protein (PrP) undergoes several post-translational modifications, including glycosylation, disulfide bond formation, and the addition of a glycosylphosphatidylinositol anchor. As a result, multiple isoforms are generated. Because of the intrinsic weakness of the PrP signal sequence, a fraction of newly synthesized molecules fails to translocate and localizes to the cytosol. The physiopathologic role of this cytosolic isoform is still being debated. Here we have shown that, in both cultured cell lines and primary neurons, ER stress conditions weaken PrP co-translational translocation, favoring accumulation of aggregation-prone cytosolic species, which retain the signal sequence but lack N-glycans and disulfides. Inhibition of proteasomes further increases the levels of cytosolic PrP. Overexpression of spliced XBP1 facilitates ER translocation, suggesting that downstream elements of the Ire1-XBP1 pathway are involved in PrP targeting. These studies reveal a link between ER stress and the formation of cytosolic PrP isoforms potentially endowed with novel signaling or cytotoxic functions.  相似文献   

20.
The main step in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conformational change of the normal cellular prion protein (PrP(C)) into the abnormal isoform, named prion (PrP(Sc)). Since PrP is a highly conserved protein, the production of monoclonal antibodies (mAbs) of high specificity and affinity to PrP is a difficult task. In the present study we show that it is possible to overcome the unresponsiveness of the immune system by immunizing wild-type BALB/c mice with a 13 amino acid PrP peptide from the C-terminal part of PrP, bound to the keyhole limpet hemocyanin (KLH). Immunization induced predominantly anti-PrP(Sc) humoral immune response. Furthermore, we were able to obtain a panel of mAbs of IgG class specific for different non-self-conformations of PrP, with anti-PrP(Sc)-specific mAbs being the most abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号