首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
When the Y chromosome of Mus musculus domesticus (YDOM) was introduced onto the C57BL/6 (B6) mouse background, half of the XY progeny (B6.YDOM) developed bilateral ovaries and female internal and external genitalia. We examined the fertility of the B6.YDOM sex-reversed female mouse. The chromosomal sex of the individual mouse was identified by dot hybridization with mouse Y chromosome-specific DNA probes. The results indicated that all XY females lacked regular estrous cyclicity although most were able to mate and ovulate after treatment with gonadotropins. When they had been ovariectomized and grafted with ovaries from the XX female litter mate, they initiated estrous cyclicity. Reciprocally, the XX female that had received XY ovarian grafts did not resume estrous cyclicity. Development of the XY ovary was morphologically comparable to the XX ovary until 16 day of gestation (d.g.), when most germ cells had reached the zygotene or pachytene stage of meiotic prophase. However, by the day of delivery (19 or 20 d.g.), no oocyte remained in the medullary cords of the XY ovary. In the control XX ovary, the first generation of follicles developed in the medullary region, and 5 delta-3 beta-hydroxysteroid dehydrogenase (3 beta-HSDH) activity appeared first in the stromal cells around growing follicles by 10 days after birth. In contrast, in the XY ovary, follicles were not formed in the medullary region, and 3 beta-HSDH activity appeared in epithelial cells of the oocyte-free medullary cords. Primordial follicles in the cortex region continued development in both the XX and XY ovaries. These results suggest that the XY female is infertile due to a defect inside the XY ovary. The prenatal loss of oocytes in the medullary cords may be a key event leading to abnormal endocrine function, and thereby, the absence of estrous cyclicity.  相似文献   

4.
When the Y chromosome of Mus musculus domesticus (Y(TIR)) was introduced onto the C57BL/6J (B6) mouse background, testis development was impaired and half of the XY progeny (Y(TIR).B6) developed a female phenotype. Y(TIR).B6 fetal ovaries showed massive death of medullary oocytes and, after birth, produced abnormal levels of steroid hormones, exhibited irregular estrous cycles, and failed to become fertile. In this study we examined whether alterations during perinatal development observed in Y(TIR).B6 ovaries permanently impaired the establishment of the hypothalamus-pituitary-ovary axis (HPOa). B6 fetal and postnatal ovaries at different stages (fetal, infantile, or adult) were transplanted orthotopically (to the ovarian bursa) to either ovariectomized B6 normal females or Y(TIR).B6 sex-reversal females. Percentage of pregnancy, litter size, and capacity to feed pups were recorded. Reciprocally, XY(TIR).B6 ovaries were orthotopically transplanted into B6 females. After crossing with fertile males, several Y(TIR).B6 sex-reversal females with B6 ovarian transplants at all ages became pregnant, had offspring, and fed their pups. On the other hand, none of the B6 female hosts with XY(TIR) ovaries became pregnant. Results demonstrated that Y(TIR).B6 sex-reversal females maintain a functional HPOa and that their failure to reproduce is primarily due to an ovarian defect.  相似文献   

5.
The oocytes of B6.Y(TIR) sex-reversed female mice can be fertilized but the resultant embryos die at early cleavage stages. In the present study, we examined chromosome segregation at meiotic divisions in the oocytes of XY female mice, compared to those of XX littermates. The timing and frequency of oocyte maturation in culture were comparable between the oocytes from both types of females. At the first meiotic division, the X- and Y-chromosomes segregated independently and were retained in oocytes at equal frequencies. However, more oocytes retained the correct number of chromosomes than anticipated from random segregation. The oocytes that had reached MII-stage were activated by fertilization or incubation with SrCl(2). As expected, the majority of oocytes from XX females completed the second meiotic division and reached the 2-cell stage in 24 h. By contrast, more than half of oocytes from XY females initially remained at the MII-stage while the rest precociously entered interphase after SrCl(2) activation; very few oocytes were seen at the second anaphase or telophase and they often showed impairment of sister-chromatid separation. Eventually the majority of oocytes entered interphase and formed pronuclei, but very few reached the 2-cell stage. Similar results were obtained after fertilization. We conclude that the XY chromosomal composition in oocyte leads to impairment in the progression of the second meiotic division.  相似文献   

6.
This study evaluated follicular development and oocyte growth in ovaries of immature Djungarian hamsters from 8 to 28 days of age and examined the influence of exogenous gonadotropins on follicular growth. An age-specific pattern of progressive follicular development was found, beginning with a compact, virtually undifferentiated ovary containing mostly small follicles on Day 8 postpartum and progressing to an ovary with mature preovulatory follicles at the end of the fourth week. Antral follicles not present on Day 12 were first detected on Day 16 postpartum. Follicles were sensitive to gonadotropins (GTH) by Day 12 postpartum, as indicated by the stimulation of follicular maturation by treatment with GTH. Ovulation, however, could be induced only when treatment with GTH was begun with females from Day 14 postpartum onwards. It was concluded that the injected GTH initiated and enhanced follicular growth in immature Djungarian hamsters.  相似文献   

7.
The current knowledge is reviewed concerning correlations between follicular development in the cow and the competence of matured oocytes to develop into an embryo following IVF and IVC. At the follicular size of 3 mm, some oocytes become competent and the proportion of competent oocytes does not increase during development up to 7 mm. The proportion of competent oocytes increases greatly in follicles > 8 mm in both untreated and gonadotropin-stimulated cows. The competence of in vitro-matured oocytes from these large follicles is lower than the competence of in vivo-matured oocytes. These observations lead to the following concept. Oocytes have acquired an intrinsic capacity to develop into an embryo after IVM-IVF-IVC at the follicular stage of 3 mm, but require an additional "prematuration" to express this competence. In vivo, this prematuration occurs during preovulatory development before the occurrence of the LH surge. In follicles of 3-7 mm, a low level of atresia appears to improve the in vitro competence of oocytes which may act via a prematuration-like effect. A thorough understanding, however, of the effect of atresia and other factors on the competence of this highly heterogeneous oocyte population is still missing. Two routes to improve the embryo yield in ovum pick-up (OPU) practice are discussed.  相似文献   

8.
Oocytes with adhering follicle cells were sampled from ovaries obtained from 11 GPI-1A----GPI-1B chimaeras, comprising 10 females and 1 hermaphrodite. GPI analysis of individual oocytes revealed a marked bias towards the GPI-1B component in the germ line of this chimaeric combination. GPI-1B XY oocytes were identified in the ovary from the hermaphrodite, the bias towards the GPI-1B germ line perhaps helping to counterbalance the normally severe selection against XY oocytes. GPI analysis of follicle cells revealed a much more balanced contribution of the two components to this ovarian cell type. Importantly, GPI-1A follicle cells were identified in more than half the follicles from an XX----XY female in which the GPI-1A component was XY, supporting an earlier conclusion of Ford et al. (1974) that XY cells can contribute to the follicles of XX----XY female mice. It is suggested that XY cells can be recruited to form follicle cells in XX----XY chimaeras when there is a developmental mismatch between the two components, such that an ovary-determining signal produced by the XX component pre-empts the testis-determining action of the Y.  相似文献   

9.
Summary The pattern of follicular development during the estrous cycles of aged rats was examined and compared with that of mature rats. In both, preovulatory follicles are derived from a select group of small pre-Graafian follicles which begin to develop at estrus and reach the preovulatory size by the morning of proestrus, but the rate of growth, as judged by an increase in the percentage of granulosa cells incorporating 3H-thymidine, is accelerated in the follicles of aged rats. A second mechanism, which accounts for preovulatory follicles in aged rats, involves the rescue from atresia of pre-Graafian and preovulatory follicles. The existence of this mechanism is supported by the observation that at metestrus in aged rats virtually all follicles, regardless of their state of atresia, possess a high percentage of granulosa cells incorporating 3H-thymidine, indicating that the follicles are growing rapidly. However, some of these rapidly growing follicles show signs of atresia such as pyknotic nuclei within their granulosa cell layers. Since follicles in the initial stage of atresia contain defective oocytes (Peluso et al. 1979b), their rescue and development into preovulatory follicles would result in the ovulation of defective oocytes, a fact which accounts in part of the lower fertility in these older animals.  相似文献   

10.
Healthy follicles with 2-24 oocytes were observed in adult rabbit ovaries during all phases of folliculogenesis from primary to preovulatory follicles. Most follicles contained 2-3 oocytes which developed according to their topographical situation in the follicle. The central oocyte in a normal topographical situation has an almost normal growth and development up to metaphase II and cumulus expansion. The peripheral oocytes grow more slowly: most do not attain the normal size or resume meiosis and remain surrounded by ordinary granulosa cells. When the number of oocytes is higher than 3, the peripheral oocytes develop even more slowly, as do the central ones. It demonstrates the necessity for the oocyte to occupy a certain position inside the follicle and to reach a size which allows resumption of meiosis; the cumulus responds only to oocytes of normal size and position. We suggest that, despite the relative frequency of binovular follicles, fertilization of two oocytes originating from one follicle is unlikely.  相似文献   

11.
When the Y chromosome of a Mus musculus domesticus male mouse (caught in Tirano, Italy) is placed on a C57BL/6J genetic background, approximately half of the XY (B6.YTIR) progeny develop into normal-appearing but infertile females. We have previously reported that the primary cause of infertility can be attributed to their oocytes. To identify the primary defect in the XY oocyte, we examined the onset and progress of meiotic prophase in the B6.YTIR fetal ovary. Using bromo-deoxyuridine incorporation and culture, we determined that the germ cells began to enter meiosis at the developmental ages and in numbers comparable to those in the control XX ovary. Furthermore, the meiotic prophase appeared to progress normally until the late zygotene stage. However, the oocytes that entered meiosis early in the XY ovary failed to complete the meiotic prophase. On the other hand, a considerable number of oocytes entered meiosis at late developmental stages and completed the meiotic prophase in the XY ovary. We propose that the timing of entry into meiosis and the XY chromosomal composition influence the survival of oocytes during meiotic prophase in the fetal ovary.  相似文献   

12.
Size-frequency analysis of atresia in cycling rats   总被引:4,自引:0,他引:4  
The purpose of this study was to delineate when, during follicular growth, the alternative developmental pathways leading to ovulation or atresia diverge. By using computerized image analysis techniques, random samples of healthy and atretic follicles in ovaries of cycling rats were subjected to size-frequency analysis. The vast preponderance of atretic follicles were of the early antral size class (approximately 300-350 micron diameter, 800-1000 granulosa cells in the largest cross-section); atretic small follicles (less than 250 granulosa cells in the largest cross-section) were rare. Follicles in early stages of atresia were uncommon in ovaries of animals killed at estrus, but were found with great frequency in ovaries of animals killed the following day (metestrus). These results suggest that, under normal cyclic conditions, there may be only one major branching point during follicular development when growing follicles become susceptible to atresia. The alternative developmental pathways leading to ovulation and atresia may not diverge until the penultimate stage of growth, immediately preceding the final transformation into a preovulatory follicle.  相似文献   

13.
Ovarian development in sexual and parthenogenetic geckos of the Heteronotia binoei complex was analysed quantitatively by gross and histological examination. Females were classified into one of four stages of the reproductive cycle: non-reproductive, preovulatory, postovulatory and postoviposition. Parthenogens had significantly more developing follicles present in the ovaries than sexual females in non-reproductive, preovulatory and postovulatory stages of the reproductive cycle. The larger number of developing follicles in parthenogenetic Heteronotia was correlated with the significantly larger body size of the parthenogenetic females at the localities examined. Maximum follicular size and rates of follicular atresia were not significantly different between sexual and parthenogenetic females. These findings raise the possibility that the reproductive output of the parthenogenetic females may be higher than that of sympatric sexual females at these localities due to an increase in follicular recruitment. Based on this evidence, we predict that at these localities parthenogenetic females produce more clutches of two eggs than sexual females. If viability is equal, this would enhance the reproductive advantage of parthenogens over the two-fold level already present. In all other respects, the morphology of the ovaries appeared very similar between parthenogenetic and sexual females and was typical of geckos.  相似文献   

14.
Morphologically good-quality cumulus oocyte complexes (COCs) can originate from slightly atretic follicles. Biochemical and ultrastructural investigations reveal that a very high percentage of bovine antral follicles express some degree of atresia. The aim of the present study was to determine the developmental competence of good quality COCs in relation to their biochemically estimated follicular wall apoptosis. For experimental design a single oocyte maturation system was established, followed by group culture processing oocytes together according to their level of follicular wall atresia estimated by an ELISA for apoptotic cell death. Single oocyte culture during maturation reduced the developmental capacity of oocytes significantly (P < 0.01), with 5% blastocysts versus 25% after common group culture. Blastocyst formation for single oocyte maturation was found exclusively in oocytes isolated from luteal stage ovaries with low degree of apoptosis. The level of follicular wall apoptosis in luteal stage follicles (0.79 +/- 0.05 units/mg protein, n = 198) was lower than in follicular stage follicles (1.14 +/- 0.05 units/mg protein, n = 208). This was caused by significant higher levels in small (< 3.5 mm diameter) and large (> 5.5 mm diameter) follicles of the latter group. In conclusion, despite reduced developmental capacity after single oocyte maturation, we were able to reveal some functional relationship between oocyte origin and quality. It was shown that morphologically good quality COCs isolated from follicles with higher degree of apoptosis lose their developmental capacity.  相似文献   

15.
16.
Histological examination of gonadotrophin stimulated Macaca fascicularis ovaries removed at mid-follicular phase showed that germinal vesicles (GV) could exhibit different configurations in follicles greater than 1000 microns in diameter. We describe 3 types of nuclear organization called GV1 (dispersed and filamentous chromatin), GV2 (clumped and filamentous chromatin) and GV3 (perinucleolar chromatin condensation). Gonadotrophin stimulation and follicular atresia induced modifications in GV chromatin dispersion. Such modifications were of a higher degree in the case of atresia which could even induce in vivo germinal vesicle breakdown (GVBD). Our findings were as follows. The frequency of GV1 oocytes was always low, but was higher in healthy than in atretic follicles, whereas GV3 oocytes were more frequent in atretic compared to healthy follicles; the oocytes which resumed meiosis in vitro were most probably those which were at the GV3 stage at the time of recovery; GV nuclear changes were related to follicle size and quality, but not to oocyte size. The mean follicular size increased from GV1 to GV3 oocyte stages whatever the follicle quality; the nucleus was often observed in a peripheral position even in GV1 oocytes; zona pellucida appearance was related to GV stage and follicle quality and was more often observed to be abnormal or absent in case of GV3 oocytes included in atretic follicles. Oocyte nuclear modifications therefore appear to be a prerequisite to resumption of meiosis.  相似文献   

17.
Hinrichs K 《Theriogenology》1991,36(2):157-168
Oocytes were collected by aspiration of follicles from horse ovaries obtained at surgery or post-mortem. The oocytes were classified according to morphology of the ooplasm and cumulus. The size of the corresponding follicles was measured, and sections of the follicles were fixed and examined histologically to determine the stage of viability or atresia. In Part 1, 11 pairs of ovaries were examined and all follicles were sectioned; in Part 2, 9 pairs of ovaries were examined and only those follicles from which oocytes were recovered were sectioned. The number of follicles examined per pair of ovaries in Part 1 (average +/- SD) was 12.9 +/- 4.1. The proportion of follicles that were viable increased with increasing follicular size (P < 0.01); the percentage of viable follicles was 21, 42 and 83% for follicles < 10 mm, 10 to 19 mm, and >/= 20 mm in diameter, respectively. The overall oocyte recovery rate on aspiration of follicles was 46%. There was no significant difference in the oocyte recovery rate between viable and atretic follicles. A significantly higher proportion of oocytes recovered from viable follicles had granular ooplasm (64 vs 39%; (P < 0.05); whereas significantly more oocytes from atretic follicles had a misshapen or dense ooplasm (23 vs 6%; P < 0.05), or an expanded or pyknotic cumulus (24 vs 6%; P < 0.05). The most common cumulus morphology (63% of oocytes from viable follicles and 48% of oocytes from atretic follicles) was presence of only the corona radiata. Only 11% of oocytes from viable follicles and 9% of oocytes from atretic follicles had a complete cumulus present.  相似文献   

18.
When the Y chromosome of a Mus musculus domesticus mouse strain is placed onto the C57BL/6J (B6) inbred background, the XY progeny develop ovaries or ovotestes but never normal testes during fetal life. While some of the hermaphroditic males become fertile, none of the XY females produces litters. Here, we examined the fertility and development of oocytes derived from the XY female mouse. With or without preceding injection of gonadotropins, female mice were mated with normal B6 males, and their embryos were recovered at various developmental stages. In vitro fertilization was performed with the eggs recovered from the oviduct after treatment with go-nadotropins. Development of embryos was examined by both light and electron microscopy. The results indicate that the oocytes released from the B6.YDOM ovary were efficiently fertilized and often initiated the first cell cleavage, but all embryos died during early preimplantation periods. Even when oocytes were fertilized in vitro, minimizing their exposure to the XY oviduct/uterus environment, most embryos died at the 1- or 2-cell stage. A few exceptional embryos reached the 4- or 8-cell stage, but abnormalities were evident in both nuclear and cytoplasmic structures of all embryos. After cleavage, neighbouring blastomeres were only loosely associated, and microvilli were abundant at the intercellular interfaces. We postulate that oocytes of the B.6.YDOM female mouse become defective during XY ovarian differentiation, and, hence, fail to proceed through normal embryonic development. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Bovine follicular atresia is associated with the apoptosis of granulosa cells and the subsequent loss of oocyte competence through the reduction of cellular contact (e.g., gap junctions). Several components of the insulin-like growth factor (IGF) system are thought to affect follicular atresia. Whereas the IGF-binding proteins (IGFBPs) are present in varying quantities throughout follicular development, IGFBP-5 appears to be present only during atresia, in parallel with its regulation in other tissue remodeling systems. However, to our knowledge, no connection has yet been made between atresia, low-molecular-weight IGFBP content, and oocyte quality in the bovine ovary. Caspases are actively involved in ovarian follicular atresia, and apoptosis in antral follicles is caspase-3-dependent. Hence, the aim of the present study was to investigate the use of these factors in the assessment of oocyte quality and developmental potential. Oocytes were aspirated, morphologically classified, and individually matured in vitro. The follicular fluid and granulosa cells of these follicles were analyzed for IGFBP profile and caspase-3 activity, respectively. A significant correlation was found between the presence of low-molecular-weight IGFBPs in bovine follicular fluid and caspase-3 activity of granulosa cells isolated from individual follicles. The highest percentage of development to the blastocyst stage was observed in oocytes from slightly atretic follicles. This group of oocytes contained an equal proportion of oocytes at grades 1-3. These data demonstrate that low-molecular-weight IGFBP profile is a more reliable method than the traditional morphological assessment of oocytes and can be used as an effective marker of developmentally competent oocytes. Importantly, these results have implications for the use of noninvasive follicular fluid markers in the selection of competent oocytes to improve outcomes of in vitro fertilization.  相似文献   

20.
The germ cell and somatic cell compartments of newborn rat and mouse ovaries, which contain only primordial stage follicles, were completely exchanged and reaggregated to produce xenogeneic chimeric ovaries. The reaggregated ovaries were grafted beneath the renal capsules of ovariectomized SCID mice to develop for periods up to 21 days. Xenogeneic follicles developed with essentially normal morphological characteristics. Both rat and mouse oocytes with species-specific characteristics grew within follicles that were composed of somatic cells exclusively of the alternative species. Rat oocytes grown in mouse follicles became competent to resume meiosis, and progressed to metaphase II when they were removed from follicles and cultured. In addition, mouse oocytes grown in rat follicles underwent fertilization and preimplantation development in vitro, and developed to term after embryos were transferred to pseudopregnant mouse foster mothers. Therefore, despite an estimated 11 million years of divergent evolution, oocytes and somatic cells of rat and mouse ovaries can be exchanged and can produce functional oocytes. It is concluded that factors involved in oocyte-somatic cell interactions necessary to support oocyte development and appropriate differentiation of the oocyte-associated granulosa cells are conserved between rats and mice. Moreover, although granulosa cells play important roles in oocyte development, the development of species-specific characteristics of oocytes occurs without apparent modification by a xenogeneic follicular environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号