首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biofilms are communities of surface-attached microbial cells that resist environmental stresses. In this study, we found that low concentrations of ethanol increase biofilm formation in Pseudomonas aeruginosa PAO1 but not in a mutant of it lacking both Psl and Pel exopolysaccharides. Low concentrations of ethanol also increased pellicle formation at the air–liquid interface.  相似文献   

2.
Xylella fastidiosa causes citrus variegated chlorosis (CVC), a destructive disease of citrus. Xylella fastidiosa forms a biofilm inside plants and insect vectors. Biofilms are complex structures involving X. fastidiosa cells and an extracellular matrix which blocks water and nutrient transport in diseased plants. It is hypothesized that the matrix might be composed of an extracellular polysaccharide (EPS), coded by a cluster of nine genes closely related to the xanthan gum operon of Xanthomonas campestris pv. campestris. To understand the role of X. fastidiosa gum genes on biofilm formation and EPS biosynthesis, we produced gumB and gumF mutants. Xylella fastidiosa mutants were obtained by insertional duplication mutagenesis and recovered after triply cloning the cells. Xylella fastidiosa gumB and gumF mutants exhibited normal cell characteristics; typical colony morphology and EPS biosynthesis were not altered. It was of note that X. fastidiosa mutants showed a reduced capacity to form biofilm when BCYE was used as the sustaining medium, a difference not observed with PW medium. Unlike X. campestris pv. campestris, the expression of the X. fastidiosa gumB or gumF genes was not regulated by glucose.  相似文献   

3.
Thirty-eight Shiga toxin-producing Escherichia coli (STEC) O157:H7/H(-) strains isolated from human infections, cattle and foods in Brazil and in some other Latin American countries were compared with regard to several phenotypic and genotypic characteristics. The genetic relatedness of the strains was also determined by pulsed-field gel electrophoresis (PFGE). Similar biochemical behaviour was identified, regardless of the origin and country of the strains. Most (89.5%) strains were sensitive to the antimicrobial agents tested, but resistance to at least one drug was observed among bovine strains. Although a diversity of stx genotypes was identified, most (77.8%) of the human strains harboured stx(2) or stx(2)stx(2c(2vha)), whereas stx(2c(2vha)) prevailed (64.2%) among strains isolated from cattle. stx(1) and stx(1)stx(2c(2vha)) were the genotypes identified less frequently, and occurred exclusively among strains isolated from food and cattle, respectively. Despite differences in the stx genotypes, all strains carried eae-gamma, efa1, ehx, iha, lpf(O157) and toxB sequences. Many closely related subgroups (more than 80% of similarity) were identified by PFGE, and the presence of a particular O157:H7 STEC clone more related to human infections in Brazil, as well as a common origin for some strains isolated from different sources and countries in Latin America can be suggested.  相似文献   

4.
The influence of type 1 fimbriae, mannose-sensitive structures, on biofilm development and maturation has been examined by the use of three isogenic Escherichia coli K12 strains: wild type, fimbriated, and non-fimbriated. Experiments with the three strains were done in minimal medium or Luria–Bertani broth supplemented with different concentrations of d-mannose. The investigation consisted of: (1) characterizing the bacterial surface of the three strains with respect to hydrophilicity and surface charge, (2) investigating the effect of type 1 fimbriae on bacterial adhesion rate and reversibility of initial adhesion on glass surfaces, and (3) verifying the role of type 1 fimbriae and exopolysaccharides (EPS) in biofilm maturation. The results suggest that type 1 fimbriae are not required for the initial bacterial adhesion on glass surfaces as the non-fimbriated cells had higher adhesion rates and irreversible deposition. Type 1 fimbriae, however, are critical for subsequent biofilm development. It was hypothesized that in the biofilm maturation step, the cells synthesize mannose-rich EPS, which functions as a ‘conditioning film’ that can be recognized by the type 1 fimbriae.  相似文献   

5.
Preventing biofilm formation: promoting cell separation with terpenes   总被引:1,自引:0,他引:1  
Both carveol and carvone were effective in dispersing Rhodococcus erythropolis cells that were being stimulated to aggregate by the presence of organic solvents. The two terpenes influenced the fatty acid composition of the cell membrane, decreasing the percentage of fatty acids with more than 16 carbon atoms, and thus cell hydrophobicity, and also the degree of saturation of the fatty acids. In the presence of 250 micromol of terpene, the volume of biofilm was reduced by one third in comparison with biofilms in the absence of terpenes. The percentage of aggregated cells was also found to depend on carvone concentration during the bioconversion of carveol to carvone, in a membrane reactor. The extent of cell aggregation decreased from 90% to 10% when carvone concentration reached ca. 48 mM in the organic phase.  相似文献   

6.
Aims: In this study, we examined the biofilm formation of 75 Salmonella enterica serovar Typhimurium (Salm. Typhimurium) human clinical isolates and the effect of subinhibitory concentrations (sub-MICs) of gentamicin, ciprofloxacin and cefotaxime on biofilm formation and exopolysaccharides (EPS) production. Methods and Results: Quantification of biofilm formation and EPS production were carried out using a modified microtitre plate assay and spectrophotometric method, respectively. The results indicate that 38 isolates (50·7%), which are predominantly of DT104 phage type, presented as the strong biofilm producers in vitro on plastic surface. When strains with the highest biofilm-forming capacity were grown in the presence of sub-MICs of gentamicin and ciprofloxacin, the inhibition of biofilm formation and EPS production was observed. In contrast, cefotaxime at 1/2 MIC (0·039 μg ml−1) was able to significantly induce the production of biofilm as well as EPS in three isolates with nontypable and DT104 phage type, respectively. Conclusions: These results clearly indicate that all the three antibiotics tested are able to interfere with biofilm formation and EPS production by Salm. Typhimurium isolates. Significance and Impact of the Study: The current study demonstrated that cefotaxime at sub-MIC can be beneficial for the behaviour of pathogen Salm. Typhimurium in vitro.  相似文献   

7.
Citrus canker is an important disease of citrus, whose causal agent is the bacterium Xanthomonas citri ssp. citri (Xcc). In previous studies, we found a group of Xcc mutants, generated by the insertion of the Tn5 transposon, which showed impaired ability to attach to an abiotic substrate. One of these mutants carries the Tn5 insertion in hupB, a gene encoding a bacterial histone-like protein, homologue to the β-subunit of the Heat-Unstable (HU) nucleoid protein of Escherichia coli. These types of protein are necessary to maintain the bacterial nucleoid organization and the global regulation of gene expression. Here, we characterized the influence of the mutation in hupB regarding Xcc biofilm formation and virulence. The mutant strain hupB was incapable of swimming in soft agar, whereas its complemented strain partially recovered this phenotype. Electron microscope imaging revealed that impaired motility of hupB was a consequence of the absence of the flagellum. Comparison of the expression of flagellar genes between the wild-type strain and hupB showed that the mutant exhibited decreased expression of fliC (encoding flagellin). The hupB mutant also displayed reduced virulence compared with the wild-type strain when they were used to infect Citrus lemon plants using different infection methods. Our results therefore show that the histone-like protein HupB plays an essential role in the pathogenesis of Xcc through the regulation of biofilm formation and biosynthesis of the flagellum.  相似文献   

8.
The bacterial biofilm is a complex environment of cells, which secrete a matrix made of various components, mainly polysaccharides and proteins. An understanding of the precise role of these components in the stability and dynamics of biofilm architecture would be a great advantage for the improvement of anti-biofilm strategies. Here, artificial biofilm matrices made of polysaccharides and auto-assembled peptides were designed, and the influence of bacterial amyloid proteins on the mechanical properties of the biofilm matrix was studied. The model polysaccharides methylcellulose and alginate and peptides derived from the amyloid proteins curli and FapC found in biofilms of Enterobacteriaceae and Pseudomonas, respectively, were used. Rheological measurements showed that the amyloid peptides do not prevent the gelation of the polysaccharides but influence deformation of the matrices under shear stress and modify the gel elastic response. Hence the secretion of amyloids could be for the biofilm a way of adapting to environmental changes.  相似文献   

9.
Deposition rates of Pseudomonas putida and Hyphomicrobium ZV620 onto glass and biofilm surfaces were quantified. Both species deposited to glass at a much slower rate than to biofilm. A definite bias by depositing cells for biofilms of their own species was evident in the highest attachment rates observed in this study.  相似文献   

10.
彭显  李继遥  徐欣 《生物工程学报》2017,33(9):1369-1375
细菌生物被膜是细菌持续性致病的重要机制。研究细菌生物被膜的形成和发展可为顽固性细菌感染防治提供新的思路与策略。环二腺苷酸c-di-AMP(Cyclic diadenosine monophosphate)是继c-di-GMP之后在细菌中新发现的一种核苷酸第二信使分子。研究发现,c-di-AMP参与调节细菌多种生理功能,包括细菌生长代谢、生物被膜形成、细胞壁的合成以及细菌毒力因子等。本文综述了c-di-AMP参与调控细菌生物被膜形成的不同方式及其分子机制。鉴于c-di-AMP在调控细菌生物被膜中的重要性,其可作为抗细菌生物被膜感染新药研发的潜在靶点。  相似文献   

11.
Porphyromonas gingivalis is recognized as one of the major periodontal pathogens in subgingival plaque, which is implicated in the progression of chronic periodontal disease. We analyzed the role of upsA in P. gingivalis 381 and its uspA-deficient mutant CW301 under various stress conditions. In general, the uspA mutant was less tolerant to a variety of environmental stresses relative to the parental strain. In addition, gene expression of uspA is upregulated during biofilm formation. Biofilm formation of the uspA mutant was also less than that of strain 381. In conclusion, the uspA gene affecting the stress responses of P. gingivalis is required for optimal biofilm formation.  相似文献   

12.
Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell’s decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.  相似文献   

13.
Aims: Bacterial biofilms generally are more resistant to stresses as compared with free planktonic cells. Therefore, the discovery of antimicrobial stress factors that have strong inhibitory effects on bacterial biofilm formation would have great impact on the food, personal care, and medical industries. Methods and Results: Salicylate‐based poly(anhydride esters) (PAE) have previously been shown to inhibit biofilm formation, possibly by affecting surface attachment. Our research evaluated the effect of salicylate‐based PAE on biofilm‐forming Salmonella enterica serovar Typhimurium. To remove factors associated with surface physical and chemical parameters, we utilized a strain that forms biofilms at the air–liquid interface. Surface properties can influence biofilm characteristics, so the lack of attachment to a solid surface eliminates those constraints. The results indicate that the salicylic acid‐based polymers do interfere with biofilm formation, as a clear difference was seen between bacterial strains that form biofilms at the air–liquid interface (top‐forming) and those that form at the surface–liquid interface (bottom‐forming). Conclusion: These results lead to the conclusion that the polymers may not interfere with attachment; rather, the polymers likely affect another mechanism essential for biofilm formation in Salmonella. Significance and Impact of the study: Biofilm formation can be prevented through controlled release of nature‐derived antimicrobials formulated into polymer systems.  相似文献   

14.
Abstract The emergence of the nontuberculosis mycobacteria (NTM) as clinically relevant pathogens has warranted the study of these ubiquitous organisms in the context of their likely environmental niche, the biofilm. We assayed the NTM bacterium Mycobacterium marinum strain 1218R, a fish outbreak isolate, for biofilm formation on different surfaces over time using three different methods. Using the MBEC system, biofilm development occurred continually over the 14-day culture period reaching a mature or stable biofilm state after 7 days postinoculation. Quantification of M. marinum biofilm formation on high-density polyethylene (HDPE), polycarbonate (PC) and silicon (Si) coupons over a 14-day period was evaluated using a continuous flow reactor system. M. marinum developed biofilms on all of the surfaces tested. However, substantially more biofilm accumulated on the silicon than on the other substrates (Si>HDPE>PC) under the same growth conditions indicating that silicon was the most effective substratum studied for the generation of M. marinum biofilms and suggesting a correlation between surface hydrophobicity and attachment. Finally, confocal laser scanning microscopy was used to visualize M. marinum biofilm development in situ over time and revealed an unusual biofilm ultrastructure. Large cell clusters attached to the surface grew in parallel sinuous arrays of cells that formed large cords.  相似文献   

15.
In this work, the uronic acids assay was evaluated for its potential to function as a bioassay to screen for antagonistic activity against the production of microbial biofilm exopolysaccharide (EPS). The assay was first applied to biofilms produced in the presence of two universal disinfectants (sodium hypochlorite and sodium dodecyl sulfate) known to inhibit microbial growth and biofilm formation. The performance of the assay was then characterized through statistical assessment of threshold concentrations for disinfection efficiency and consistency relative to values reported in the literature. The assay was then evaluated for its utility in screening for enzymatic or chemical inhibitors of biofilm formation (eg glycosidases, halogenated furanones, and semi-crude fractions extracted from minimally fouled marine plants) and its ability to distinguish between true anti-biofilm activity and simple disinfection. Activity was characterized as (i) no effect, (ii) a true positive effect (ie increased biofilm EPS), (iii) anti-bacterial activity (ie decreased biofilm EPS and analogous decrease in planktonic growth), and (iv) anti-biofilm EPS activity (ie decreased biofilm EPS, without analogous decrease in planktonic growth). Results demonstrate that the uronic acids assay can augment existing biofilm characterization methods by providing a quantitative measure of biofilm EPS.  相似文献   

16.
口腔静态生物膜模型是体外模拟口腔微生态环境的重要手段,因其成本低、通量高、可靠性好、操作容易等优点,已成为研究各种口腔疾病的发病机制,测试各种药物、口腔护理用品、食品的重要工具。建立口腔静态生物膜模型,可根据研究目的,选择不同的装置、接种源、培养基、基质和培养条件,并通过测定生物量、代谢活性、群落结构以及进行可视化分析等多种方法评价生物膜的生长情况。本文汇总了近年来报道的口腔静态生物膜模型建立和评价的方法学要素,并分析讨论了各种方法的适用范围,希望有助于相关领域研究和生产实践的开展。  相似文献   

17.
【目的】体外构建水霉菌(Saprolegnia)生物膜(Biofilm,BF),研究环境因子对其生物膜形成的影响。【方法】采用改良的微孔板法研究静置培养条件下寄生水霉(Saprolegnia parasitica)ATCC200013在96孔酶标板上的成膜情况,CCK-8法(Cell Counting Kit-8)定量检测生物膜中水霉菌的活力。【结果】水霉菌的生物膜的OD450值在培养24 h达到峰值,48 h后趋于稳定。随着初始孢子浓度升高,水霉菌生物膜OD450值升高,差异显著(P0.05)。20-25°C生物膜形成量最多,OD450值显著高于其他温度组(P0.05)。在起始pH值为4-11的沙氏葡萄糖液体培养基中,水霉菌均能形成生物膜。在培养基中加入0.12 mmol/L以上CaCl2,能促进生物膜形成;添加0.03-2.00 mmol/L MgCl2,水霉菌生物膜形成量与未添加MgCl2对照组无显著性差异;Cu2+对水霉菌生物膜的形成有显著影响,0.5 mmol/L以上添加处理几乎不形成生物膜;NaCl能明显抑制水霉菌生物膜的形成,当NaCl质量分数低于0.12%时,对生物膜形成的影响较小(P0.05)。水霉菌在鲫皮和肌肉提取液包被后生物膜形成量与对照组相比无显著性差异,而鲫表皮黏液、鳃黏液包被后生物膜的形成量明显减少。【结论】研究首次采用微孔板法体外构建水霉菌生物膜,发现其生物膜的形成与多种环境因素有着密切的关系。这为了解水霉菌生物膜的形成规律提供了一定参考,为水霉菌生物膜的进一步研究奠定了基础。  相似文献   

18.
Prevention of biofilm formation by polymer modification   总被引:3,自引:0,他引:3  
Bacterial biofilm formation on synthetic polymers plays an important role in industry and in modern medicine, leading, for example, to difficult-to-treat infections caused by colonized foreign bodies. Prevention of biofilm formation is a necessary step in the successful prophylaxis of such infections. One approach is to inhibit bacterial adherence by polymer surface modification. We have investigated polymer modification by glow discharge treatment in order to study the influence of the modified surface on bacterial adherence. Surface roughness, surface charge density and contact angles of the modified polymers were determined and related to the adherence ofStaphylococcus epidermidis KH6. Although no influence of surface roughness and charge density on bacterial adherence was noticed, a correlation between the free enthalpy of adhesion (estimated from contact angle measurements) and adherence was observed. There seems to exist a certain minimum bacterial adherence, independent of the nature of the polymer surface. Modified polymers with negative surface charge allow for bacterial adherence close to the adherence minimum. These polymers could be improved further by the ionic bonding of silver ions to the surface. Such antimicrobial polymers are able to prevent bacterial colonization, which is a prerequisite for biofilm formation. It is suggested that modification of polymers and subsequent surface coupling of antimicrobials might be an effective approach for the prevention of bacterial biofilm formation.  相似文献   

19.
细菌生物被膜(Bacterial biofilm,BF)是黏附于机体黏膜或生物材料表面、由细菌及其分泌的多聚糖、蛋白质和核酸等组成的被膜状生物群体,是造成持续性感染的重要原因之一。细菌在生长繁殖时会产生一些次级代谢产物,部分会作为生物信号分子在细胞内或细胞间传递信息,使细菌在多细胞水平协调统一相互配合,以完成一些重要的生理学功能,如生物发光、BF的形成、运动与固定态生活方式的转换等。信号分子在BF形成过程中起着重要的调控作用。文中从密度感应系统(Quorum-sensing systems,QS)、环二鸟苷酸(Cyclic diguanylate,c-di-GMP)、双组分系统(Two-component systems,TCS)和sRNA等方面介绍影响BF形成的相关信号分子,重点对BF形成过程中的信号分子调控机制进行概述,这对于深入揭示信号分子调控BF形成的机制十分必要。  相似文献   

20.
The capacity to bind to biomolecules is considered to be the basis for any physiological role of boron (B). Legume arabinogalactan protein‐extensin (AGPE), a major component of the infection thread matrix of legume nodules is a potential B‐ligand. Therefore, its role in infection threads development was investigated in Pisum sativum grown under B deficiency. Using the AGPE‐specific antibody MAC265, immunochemical analysis revealed that a 175 kDa MAC265 antigen was abundant in +B but much weaker in –B nodule extracts. A B‐dependent complex involving AGPE and rhamnogalacturonan II (RGII) could be co‐purified using anti‐RGII antiserum. Following fractionation of –B nodules, MAC265 antigens were mostly associated with the bacterial pellet. Immunogold staining confirmed that AGPE was closely associated with the surface of rhizobia in the lumen of threads in ?B nodules whereas in +B nodules, AGPE was separated from the bacterial surface by a sheath of capsular polysaccharide. Interestingly, colonies of rhizobia grown in free‐living culture without B developed low capsule production. Therefore, we propose that B could be important for apical growth of infection threads by strengthening thread wall through a B‐dependent AGPE‐RGII interaction and by promoting bacterial advance through a B‐dependent production of a stable rhizobial capsule that prevents AGPE attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号