首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Niedernhofer LJ 《DNA Repair》2008,7(7):1180-1189
Nucleotide excision repair (NER) is a highly conserved mechanism to remove helix-distorting DNA base damage. A major substrate for NER is DNA damage caused by environmental genotoxins, most notably ultraviolet radiation. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three human diseases caused by inherited defects in NER. The symptoms and severity of these diseases vary dramatically, ranging from profound developmental delay to cancer predisposition and accelerated aging. All three syndromes include neurological disease, indicating an important role for NER in protecting against spontaneous DNA damage as well. To study the pathophysiology caused by DNA damage, numerous mouse models of NER-deficiency were generated by knocking-out genes required for NER or knocking-in disease-causing human mutations. This review explores the utility of these mouse models to study neurological disease caused by NER-deficiency.  相似文献   

3.
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer risk and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.  相似文献   

4.
Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer   总被引:11,自引:0,他引:11  
Xeroderma pigmentosum (XP) is a rare, autosomal recessive disease that is characterized by the extreme sensitivity of the skin to sunlight. Compared to normal individuals, XP patients have a more than 1000-fold increased risk of developing cancer on sun-exposed areas of the skin. Genetic and molecular analyses have revealed that the repair of ultraviolet (UV)-induced DNA damage is impaired in XP patients owing to mutations in genes that form part of a DNA-repair pathway known as nucleotide excision repair (NER). Two other diseases, Cockayne syndrome (CS) and the photosensitive form of trichothiodystrophy (TTD), are linked to a defect in the NER pathway. Strikingly, although CS and TTD patients are UV-sensitive, they do not develop skin cancer. The recently developed animal models that mimic the human phenotypes of XP, CS and TTD will contribute to a better understanding of the etiology of these diseases and the role of UV-induced DNA damage in the development of skin cancer.  相似文献   

5.
6.
Skin pigmentation abnormalities are manifested in several disorders associated with deficient DNA repair mechanisms such as nucleotide excision repair (NER) and double‐strand break (DSB) diseases, a topic that has not received much attention up to now. Hereditary disorders associated with defective DNA repair are valuable models for understanding mechanisms that lead to hypo‐ and hyperpigmentation. Owing to the UV‐associated nature of abnormal pigmentary manifestations, the outcome of the activated DNA damage response (DDR) network could be the effector signal for alterations in pigmentation, ultimately manifesting as pigmentary abnormalities in repair‐deficient disorders. In this review, the role of the DDR network in the manifestation of pigmentary abnormalities in NER and DSB disorders is discussed with a special emphasis on NER disorders.  相似文献   

7.
8.
9.
10.
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.  相似文献   

11.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.  相似文献   

12.
Many human hereditary neurological diseases, including fragile X syndrome, myotonic dystrophy, and Friedreich's ataxia, are associated with expansions of the triplet repeat sequences (TRS) (CGG/CCG, CTG/CAG, and GAA/TTC) within or near specific genes. Mechanisms that mediate mutations of TRS include DNA replication, repair, and gene conversion and (or) recombination. The involvement of the repair systems in TRS instability was investigated in Escherichia coli on plasmid models, and the results showed that the deficiency of some nucleotide excision repair (NER) functions dramatically affects the stability of long CTG inserts. In such models in which there are tens or hundreds of plasmid molecules in each bacterial cell, repetitive sequences may interact between themselves and according to a recombination hypothesis, which may lead to expansions and deletions within such repeated tracts. Since one cannot control interaction between plasmids, it is also sometimes difficult to give precise interpretation of the results. Therefore, using modified lambda phage (lambdaInCh), we have constructed a chromosomal model to study the instability of trinucleotide repeat sequences in E. coli. We have shown that the stability of (CTG/CAG)68 tracts in the bacterial chromosome is influenced by mutations in NER genes in E. coli. The absence of the uvrC or uvrD gene products greatly enhances the instability of the TRS in the chromosome, whereas the lack of the functional UvrA or UvrB proteins causes substantial stabilization of (CTG/CAG) tracts.  相似文献   

13.
Vermeulen W 《DNA Repair》2011,10(7):760-771
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.  相似文献   

14.
UvrD, a highly conserved helicase involved in mismatch repair, nucleotide excision repair (NER), and recombinational repair, plays a critical role in maintaining genomic stability and facilitating DNA lesion repair in many prokaryotic species. In this report, we focus on the UvrD homolog in Helicobacter pylori, a genetically diverse organism that lacks many known DNA repair proteins, including those involved in mismatch repair and recombinational repair, and that is noted for high levels of inter- and intragenomic recombination and mutation. H. pylori contains numerous DNA repeats in its compact genome and inhabits an environment rich in DNA-damaging agents that can lead to increased rearrangements between such repeats. We find that H. pylori UvrD functions to repair DNA damage and limit homologous recombination and DNA damage-induced genomic rearrangements between DNA repeats. Our results suggest that UvrD and other NER pathway proteins play a prominent role in maintaining genome integrity, especially after DNA damage; thus, NER may be especially critical in organisms such as H. pylori that face high-level genotoxic stress in vivo.  相似文献   

15.
Nucleotide excision repair (NER) is a major cellular defense against the carcinogenic effects of ultraviolet light from the sun. Mutational inactivation of NER proteins, like DDB and CSA, leads to hereditary diseases such as xeroderma pigmentosum (XP) and Cockayne syndrome (CS). Here, we show that DDB2 and CSA are each integrated into nearly identical complexes via interaction with DDB1. Both complexes contain cullin 4A and Roc1 and display ubiquitin ligase activity. They also contain the COP9 signalosome (CSN), a known regulator of cullin-based ubiquitin ligases. Strikingly, CSN differentially regulates ubiquitin ligase activity of the DDB2 and CSA complexes in response to UV irradiation. Knockdown of CSN with RNA interference leads to defects in NER. These results suggest that the distinct UV response of the DDB2 and CSA complexes is involved in diverse mechanisms of NER.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号