首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processing of ribosomal RNA has been studied in a temperature sensitive mutant of the Syrian hamster cell line BHK 21. At 39 degrees C, these cells are unable to synthesize 28S RNA, and 60S ribosomal subunits, while 18S RNA, and 40S subunits are produced at both temperatures. At 39 degrees C the 45S RNA precursor is transcribed and processed as in wild type cells. The processing of the RNA precursors becomes defective after the cleavage of the 41S RNA, and the separation of the 18S and 28S RNAs sequences in two different RNA molecules. The 36S RNA precursor, which is always present in very small quantity in the nucleoli of wild type cells and of the mutant at 33 degrees C, is found in very large amounts in the mutant at 39 degrees C. The 36S RNA can be, however, slowly processed to 32S RNA. The 32S RNA cannot be processed at 39 degrees C, and it is degraded soon after its formation. Only a small proportion accumulates in the nucleoli. The 32S RNA synthesized at 39 degrees C cannot be processed to 28S RNA upon shift to the permissive temperature, even when the processing of the newly synthesized rRNA has returned to normal. The data suggest that the 36S and 32S RNAs are contained in aberrant ribonucleoprotein particles, leading to a defective processing of the particles as a whole.  相似文献   

2.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

3.
We have described a mutant of Escherichia coli (designated 2S142) which shows specific inhibition of rRNA synthesis at 42 degrees C. ppGpp levels increase at the restrictive temperature, as expected. However, when the cells are returned to 30 degrees C, rRNA synthesis resumes before ppGpp levels have returned to normal. Furthermore, when ppGpp levels are decreased by the addition of tetracycline or choramphenicol, rRNA synthesis does not resume at 42 degrees C. Also, a derivative of 2S142 with a temperature-sensitive G factor (which cannot synthesize either protein or ppGpp at 42 degrees C) shows identical kinetics of rRNA shut-off at 42 degrees C as 2S142. Thus, the elevated ppGpp levels in this mutant do not appear to be directly responsible for the cessation of rRNA synthesis at 42 degrees C.  相似文献   

4.
5.
RbfA, a 30S ribosome-binding factor, is a multicopy suppressor of a cold-sensitive C23U mutation of the 16S rRNA and is required for efficient processing of the 16S rRNA. At 37 degrees C, DeltarbfA cells show accumulation of ribosomal subunits and 16S rRNA precursor with a significantly reduced polysome profile in comparison with wild-type cells. RbfA is also a cold-shock protein essential for Escherichia coli cells to adapt to low temperature. In this study, we examined its association with the ribosome and its role in 16S rRNA processing and ribosome profiles at low temperature. In wild-type cells, following cold shock at 15 degrees C, the amount of free RbfA remained largely stable, while that of its 30S subunit-associated form became several times greater than that at 37 degrees C and a larger fraction of total 30S subunits was detected to be RbfA-containing. In DeltarbfA cells, the pre-16S rRNA amount increased after cold shock with a concomitant reduction of the mature 16S rRNA amount and the formation of polysomes was further reduced. A closer examination revealed that 30S ribosomal subunits of DeltarbfA cells at low temperature contained primarily pre-16S rRNA and little mature 16S rRNA. Our results indicate that the cold sensitivity of DeltarbfA cells is directly related to their lack of translation initiation-capable 30S subunits containing mature 16S rRNA at low temperature. Importantly, when the C-terminal 25 residue sequence was deleted, the resulting RbfADelta25 lost the abilities to stably associate with the 30S subunit and to suppress the dominant-negative, cold-sensitive phenotype of the C23U mutation in 16S rRNA but was able to suppress the 16S rRNA processing defect and the cold-sensitive phenotype of the DeltarbfA cells, suggesting that RbfA may interact with the 30S ribosome at more than one site or function in more than one fashion in assisting the 16S rRNA maturation at low temperature.  相似文献   

6.
The effects of pH, carbon dioxide vapor pressure, pCO(2), and temperature on E1 and E3 deleted recombinant adenovirus vector (rAV) production with HEK293S cells have been studied in the ranges of pH = 6.7-7.7, pCO(2) = 0.05-0.20 atm, and T = 32-39 degrees C, respectively. The experiments were performed in four 500-mL bioreactors in parallel, which make possible the reduction of inter-run variability. Cell concentration and viability, relative oxygen uptake rate (OUR), fluorescence, and viral titer were measured. It was found that, although pH and pCO(2) did not affect significantly cell viability in the range studied, they had an important effect on virus titer. pCO(2) allowed the maximum production of rAV at 0.05 atm, and pH showed a very sharp optimum at 7.2. Temperature had an effect on both cell metabolism and virus titer. Low temperature prolonged cell viability and high OUR. Most of all, a 3-fold increase in virus yield was found at 35 degrees C compared to that at 37 degrees C, while 32 degrees C was not as beneficial (1.5-fold increase). This finding could have an important impact on large-scale production. This phenomenon was modeled using a simple 3-parameter synthesis-decay model. This model shows how the optimum gain in virus production at 35 degrees C is due to a balance between the production and decay processes at that temperature.  相似文献   

7.
We have previously described a temperature-sensitive mutant of Escherichia coli, 2S142 (rel-, met-, rns-, ilv-, ts-) which shows specific inhibition of stable RNA synthesis at 42 degrees C. This mutation mimics a carbon source downshift in that the decay of guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) is inhibited at the restrictive temperature. In this paper we show that the temperature-sensitive lesion in 2S142 does affect the uptake of glucose or alpha-D-methylglucopyranoside (alpha DMG) at 42 degrees C. However, restoration of glucose or alpha DMG uptake by the insertion of a constitutive galactose permease gene or further restriction of glucose uptake by insertion of a ptsG mutation into 2S142 have no effect on rRNA synthesis at 42 degrees C (although ppGpp levels are lowered in both cases). Furthermore, while restriction of uptake at 42 degrees C varies widely from carbon source to carbon source, severe restriction of rRNA synthesis is observed on all carbon sources tested at 42 degrees C. Levels of glycolytic intermediates, adenylate energy charge, ATP levels, and cAMP levels are all unaffected at the restrictive temperature. GTP levels decrease at 42 degrees C in glucose grown cells but that also does not appear to be related to the decrease in rRNA synthesis. These data were interpreted to suggest that the restriction of stable RNA synthesis in 2S142 at 42 degrees C can not be explained on the basis of decreased uptake and/or metabolism of carbon source. "Phantom spot" levels do decrease in 2S142 at 42 degrees C. In fact, "phantom spot" is the only putative regulatory molecule which correlates with restriction of rRNA synthesis on all carbon sources tested.  相似文献   

8.
To investigate the effect of culture temperature on erythropoietin (EPO) production and glycosylation in recombinant Chinese hamster ovary (CHO) cells, we cultivated CHO cells using a perfusion bioreactor. Cells were cultivated at 37 degrees C until viable cell concentration reached 1 x 10(7) cells/mL, and then culture temperature was shifted to 25 degrees C, 28 degrees C, 30 degrees C, 32 degrees C, 37 degrees C (control), respectively. Lowering culture temperature suppressed cell growth but was beneficial to maintain high cell viability for a longer period. In a control culture at 37 degrees C, cell viability gradually decreased and fell below 80% on day 18 while it remained over 90% throughout the culture at low culture temperature. The cumulative EPO production and specific EPO productivity, q(EPO), increased at low culture temperature and were the highest at 32 degrees C and 30 degrees C, respectively. Interestingly, the cumulative EPO production at culture temperature below 32 degrees C was not as high as the cumulative EPO production at 32 degrees C although the q(EPO) at culture temperature below 32 degrees C was comparable or even higher than the q(EPO) at 32 degrees C. This implies that the beneficial effect of lowering culture temperature below 32 degrees C on q(EPO) is outweighed by its detrimental effect on the integral of viable cells. The glycosylation of EPO was evaluated by isoelectric focusing, normal phase HPLC and anion exchange chromatography analyses. The quality of EPO at 32 degrees C in regard to acidic isoforms, antennary structures and sialylated N-linked glycans was comparable to that at 37 degrees C. However, at culture temperatures below 32 degrees C, the proportions of acidic isoforms, tetra-antennary structures and tetra-sialylated N-linked glycans were further reduced, suggesting that lowering culture temperature below 32 degrees C negatively affect the quality of EPO. Thus, taken together, cell culture at 32 degrees C turned out to be the most satisfactory since it showed the highest cumulative EPO production, and moreover, EPO quality at 32 degrees C was not deteriorated as obtained at 37 degrees C.  相似文献   

9.
Mitochondrial ribosomal RNA species from mouse L cells, rat liver, rat hepatoma, hamster BHK-21 cells and human KB cells were examined by electrophoresis on polyacrylamide-agarose gels and sedimentation in sucrose density gradients. The S(E) (electrophoretic mobility) and S values of mitochondrial rRNA of all species were highly dependent on temperature and ionic strength of the medium; the S(E) values increased and the S values decreased with an increase in temperature at a low ionic strength. At an ionic strength of 0.3 at 23-25 degrees C or an ionic strength of 0.01 at 3-4 degrees C the S and S(E) values were almost the same being about 16.2-18.0 and 12.3-13.6 for human and mouse mitochondrial rRNA. The molecular weights under these conditions were calculated to be 3.8x10(5)-4.3x10(5) and 5.9x10(5)-6.8x10(5), depending on the technique used. At 25 degrees C in buffers of low ionic strength mouse mitochondrial rRNA species had a lower electrophoretic mobility than those of human and hamster. Under these conditions the smaller mitochondrial rRNA species of hamster had a lower electrophoretic mobility than that of human but the larger component had an identical mobility. Mouse and rat mitochondrial rRNA species had identical electrophoretic mobilities. Complex differences between human and mouse mitochondrial rRNA species were observed on sedimentation in sucrose density gradients under various conditions of temperature and ionic strength. Mouse L-cell mitochondrial rRNA was eluted after cytoplasmic rRNA on a column of methylated albumin-kieselguhr.  相似文献   

10.
Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8-9.5, with an optimum at pH 9.3 and in a temperature range of 5-39 degrees C, with an optimum at 28-32 degrees C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3-64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21-29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).  相似文献   

11.
rRNA from detergent-purified nuclei was fractionated quantitatively, by two independent methods, into nucleolar and nucleoplasmic RNA fractions. The two RNA fractions were analysed by urea/agar-gel electrophoresis and the amount of pre-rRNA (precursor of rRNA) and rRNA components was determined. The rRNA constitutes 35% of total nuclear RNA, of which two-thirds are in nucleolar RNA and one-third in nucleoplasmic RNA. The identified pre-rRNA components (45 S, 41 S, 39 S, 36 S, 32 S and 21 S) are confined to the nucleolus and constitute about 70% of its rRNA. The remaining 30% are represented by 28 S and 18 S rRNA, in a molar ratio of 1.4. The bulk of rRNA in nucleoplasmic RNA is represented by 28 S and 18 S rRNA in a molar ratio close to 1.0. Part of the mature rRNA species in nucleoplasmic RNA originate from ribosomes attached to the outer nuclear membrane, which resist detergent treatment. The absolute amount of nuclear pre-rRNA and rRNA components was evaluated. The amount of 32 S and 21 S pre-rRNA (2.9 x 10(4) and 2.5 x 10(4) molecules per nucleus respectively) is 2-3-fold higher than that of 45 S, 41 S and 36 S pre-rRNA.  相似文献   

12.
Kim BY  Kim JH  Han YJ  Ahn SC  Kang DO  Oh WK  Ko HR  Lee HS  Mheen TI  Ahn JS 《IUBMB life》1999,48(1):85-89
In tsRSV-infected NRK (tsNRK) cells, pp60(v-src) reactivation by temperature-shift from a nonpermissive temperature, 39 C, to a permissive one, 32 degrees C, induced the production of inositol phosphates (IPt) and phosphatidylethanol (PEt). This was accompanied by an increase in membrane-associated protein kinase C (PKC) activity in the absence of exogenous growth factors. However, with serum-stimulation, the amounts of IPt and PEt at 32 degrees C were less than those at 39 degrees C. Pretreatment with PKC inhibitors, Ro-31-8220 and staurosporine, enhanced the accumulation of IPt but not of PEt at 32 degrees C. The tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) was increased either by serum or by pp60(v-src) reactivation. These results suggest that serum transduces its signal through PLCgamma1 mediation, and that pp60(v-src), possibly through the PKC mediation, negatively affects serum-induced PLCgamma1 activation.  相似文献   

13.
14.
Temperature is an important factor controlling CH(4) production in anoxic rice soils. Soil slurries, prepared from Italian rice field soil, were incubated anaerobically in the dark at six temperatures of between 10 to 37 degrees C or in a temperature gradient block covering the same temperature range at intervals of 1 degrees C. Methane production reached quasi-steady state after 60 to 90 days. Steady-state CH(4) production rates increased with temperature, with an apparent activation energy of 61 kJ mol(-1). Steady-state partial pressures of the methanogenic precursor H(2) also increased with increasing temperature from <0.5 to 3.5 Pa, so that the Gibbs free energy change of H(2) plus CO(2)-dependent methanogenesis was kept at -20 to -25 kJ mol of CH(4)(-1) over the whole temperature range. Steady-state concentrations of the methanogenic precursor acetate, on the other hand, increased with decreasing temperature from <5 to 50 microM. Simultaneously, the relative contribution of H(2) as methanogenic precursor decreased, as determined by the conversion of radioactive bicarbonate to (14)CH(4), so that the carbon and electron flow to CH(4) was increasingly dominated by acetate, indicating that psychrotolerant homoacetogenesis was important. The relative composition of the archaeal community was determined by terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes (16S rDNA). T-RFLP analysis differentiated the archaeal Methanobacteriaceae, Methanomicrobiaceae, Methanosaetaceae, Methanosarcinaceae, and Rice clusters I, III, IV, V, and VI, which were all present in the rice field soil incubated at different temperatures. The 16S rRNA genes of Rice cluster I and Methanosaetaceae were the most frequent methanogenic groups. The relative abundance of Rice cluster I decreased with temperature. The substrates used by this microbial cluster, and thus its function in the microbial community, are unknown. The relative abundance of acetoclastic methanogens, on the other hand, was consistent with their physiology and the acetate concentrations observed at the different temperatures, i.e., the high-acetate-requiring Methanosarcinaceae decreased and the more modest Methanosaetaceae increased with increasing temperature. Our results demonstrate that temperature not only affected the activity but also changed the structure and the function (carbon and electron flow) of a complex methanogenic system.  相似文献   

15.
The synthesis of 5-S RNA was found to be unchanged at both the permissive (33.5 degrees C) and non-permissive (38.5 degrees C) temperatures in a temperature-sensitive Baby Hamster Kidney cell line (BHK 21 ts 422 E) as measured relative to synthesis of 18-S rRNA. The 5-S RNA is shown to be associated with nucleolar ribonucleoprotein particles even though rRNA processing does not yield a functional 28-S rRNA at the non-permissive temperature. The amount of 5-S RNA found associated with the 80-S ribonucleoprotein particles was the same at the permissive and non-permissive temperatures, indicating that an aberrant 5-S RNA contribution to rRNA processing is not a primary cause for the temperature-sensitive lesion of rRNA maturation in this mutant cell line. The amount of 5-S RNA in nucleolar 80-S RNA particles indicated that the association of 5-S RNA with the rRNA precursor particle occurs before the cleavage step at which 32-S precursor RNA is produced.  相似文献   

16.
Effect of heat shock on RNA metabolism in HeLa cells   总被引:14,自引:0,他引:14  
  相似文献   

17.
The maturation of pre-rRNA (precursor to rRNA)in liver nuclei is studied by agar/ureagel electrophoresis, kinetics of labelling in vivo with [14C] orotate and electron-microscopic observation of secondary structure of RNA molecules. (1) Processing starts from primary pre-rRNA molecules with average mol. wt. 4.6X10(6)(45S) containing the segments of both 28S and 18S rRNA. These molecules form a heterogeneous peak on electrophoresis. The 28S rRNA segment is homogeneous in its secondary structure. However, the large transcribed spacer segment (presumably at the 5'-end) is heterogeneous in size and secondary structure. A minor early labelled RNA component with mol.wt. about 5.8X10(6) is reproducibly found, but its role as a pre-rRNA species remains to be determined. (2) The following intermediate pre-rRNA species are identified: 3.25X10(6) mol.wt.(41S), a precursor common to both mature rRNA species ; 2.60X10(6)(36S) and 2.15X10(6)(32S) precursors to 28S rRNA; 1.05X10(6) (21S) precursor to 18S rRNA. The pre-rRNA molecules in rat liver are identical in size and secondary structure with those observed in other mammalian cells. These results suggest that the endonuclease-cleavage sites along the pre-rRNA chain are identical in all mammalian cells. (3) Labelling kinetics and the simultaneous existence of both 36S and 21S pre-rRNA reveal that processing of primary pre-rRNA in adult rat liver occurs simultaneously by at least two major pathways: (i) 45S leads to 41S leads to 32S+21S leads to 28S+18S rRNA and (ii) 45S leads to 41S leads to 36S+18S leads to 32S leads to 28S rRNA. The two pathways differ by the temporal sequence of endonuclease attack along the 41 S pre-rRNA chain. A minor fraction (mol.wt.2.9X10(6), 39S) is identified as most likely originating by a direct split of 28S rRNA from 45S pre-rRNA. These results show that in liver considerable flexibility exists in the order of cleavage of pre-rRNA molecules during processing.  相似文献   

18.
19.
The (3'-->5') exoribonuclease RNase R interacts with the endoribonuclease RNase E in the degradosome of the cold-adapted bacterium Pseudomonas syringae Lz4W. We now present evidence that the RNase R is essential for growth of the organism at low temperature (4 degrees C). Mutants of P. syringae with inactivated rnr gene (encoding RNase R) are cold-sensitive and die upon incubation at 4 degrees C, a phenotype that can be complemented by expressing RNase R in trans. Overexpressing polyribonucleotide phosphorylase in the rnr mutant does not rescue the cold sensitivity. This is different from the situation in Escherichia coli, where rnr mutants show normal growth, but pnp (encoding polyribonucleotide phosphorylase) and rnr double mutants are nonviable. Interestingly, RNase R is not cold-inducible in P. syringae. Remarkably, however, rnr mutants of P. syringae at low temperature (4 degrees C) accumulate 16 and 5 S ribosomal RNA (rRNA) that contain untrimmed extra ribonucleotide residues at the 3' ends. This suggests a novel role for RNase R in the rRNA 3' end processing. Unprocessed 16 S rRNA accumulates in the polysome population, which correlates with the inefficient protein synthesis ability of mutant. An additional role of RNase R in the turnover of transfer-messenger RNA was identified from our observation that the rnr mutant accumulates transfer-messenger RNA fragments in the bacterium at 4 degrees C. Taken together our results establish that the processive RNase R is crucial for RNA metabolism at low temperature in the cold-adapted Antarctic P. syringae.  相似文献   

20.
5S rRNA is an integral component of the large ribosomal subunit in virtually all living organisms. Polyamine binding to 5S rRNA was investigated by cross-linking of N1-azidobenzamidino (ABA)-spermine to naked 5S rRNA or 50S ribosomal subunits and whole ribosomes from Escherichia coli cells. ABA-spermine cross-linking sites were kinetically measured and their positions in 5S rRNA were localized by primer extension analysis. Helices III and V, and loops A, C, D and E in naked 5S rRNA were found to be preferred polyamine binding sites. When 50S ribosomal subunits or poly(U)-programmed 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site were targeted, the susceptibility of 5S rRNA to ABA-spermine was greatly reduced. Regardless of 5S rRNA assembly status, binding of spermine induced significant changes in the 5S rRNA conformation; loop A adopted an apparent ‘loosening’ of its structure, while loops C, D, E and helices III and V achieved a more compact folding. Poly(U)-programmed 70S ribosomes possessing 5S rRNA cross-linked with spermine were more efficient than control ribosomes in tRNA binding, peptidyl transferase activity and translocation. Our results support the notion that 5S rRNA serves as a signal transducer between regions of 23S rRNA responsible for principal ribosomal functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号