首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of dust on phytophagous mite numbers was examined in five apple orchards situated in the dry, inland apple producing Ceres area, South Africa. The study was conducted over three seasons. The season with the most dust had the least number of mites. There was no relationship between the amount of dust on leaves and mite numbers from different orchards. Of the 15 correlations between the amount of dust on individual trees and the number of mites on these trees, two were marginally not significant and one was highly significant, but negative. Therefore, seasons during which there is a lot of dust did not result in mite outbreaks nor did dusty orchards harbour elevated mite population levels, and trees with a lot of dust did not necessarily harbour more mites than trees with less dust. However, if there is enough dust to cause stress to the trees, phytophagous mite outbreaks could occur.  相似文献   

2.
3.
4.
Efficient breeding and selection of high-quality apple cultivars requires knowledge and understanding of the underlying genetics. The availability of genetic linkage maps constructed with molecular markers enables the detection and analysis of major genes and quantitative trait loci contributing to the quality traits of a genotype. A segregating population of the cross between the apple varieties `Fiesta' (syn. `Red Pippin') and `Discovery' has been observed over three years at three different sites in Switzerland and data on growth habit, blooming behaviour, juvenile period and fruit quality has been recorded. QTL analyses were performed, based on a genetic linkage map consisting of 804 molecular markers and covering all 17 apple chromosomes. With the maximum likelihood based interval mapping method, the investigated complex traits could be dissected into a number of QTLs affecting the observed characters. Genomic regions participating in the genetic control of stem diameter, plant height increment, leaf size, blooming time, blooming intensity, juvenile phase length, time of fruit maturity, number of fruit, fruit size and weight, fruit flesh firmness, sugar content and fruit acidity were identified and compared with previously mapped QTLs in apple. Although `Discovery' fruit displayed a higher acid content, both acidity QTLs were attributed to the sweeter parent `Fiesta'. This indicated homozygosity at the acidity loci in `Discovery' preventing their detection in the progeny due to the lack of segregation.  相似文献   

5.
6.
The importance of speciation without the complete geographical separation of diverging populations (sympatric speciation) has become increasingly accepted. One of the textbook examples of recent speciation in sympatry is the apple maggot fly Rhagoletis pomonella, in which genetically differentiated host races feed on either hawthorn or apple. Three recent articles by Feder and collaborators show that the history of these host races is more complicated than was previously realized. Genes that differentiate races of flies that feed on either apple or hawthorn are located in chromosomal rearrangements. This variation forms a latitudinal cline that must have been established long before apples were available as hosts. Furthermore, there is also new evidence for the very recent evolution of a derived preference for volatile chemicals that are typical of apple fruits among apple-feeding flies. These results show that adaptation to apple populations has involved both the sorting of ancestral adaptive variation and the selection of novel mutations.  相似文献   

7.
The incidence of predation of eight species of predacious mirids (Hemiptera: Miridae) present in an apple orchard of Québec on the green apple aphid, two-spotted spider mite and European red mite were investigated. The daily consumption rates varied from 1–2 green apple aphids forHyaliodes vitripennis Say andCampylomma verbasci Meyer to 7–9 aphids forDeraeocoris fasciolus Knight andLepidopsallus minisculus Knight.H. vitripennis consumed significantly more mites than the other mirid species with 26 and 18 mites per day for the two-spotted spider mite and the European red mite respectively. The combined use ofH. vitripennis andL. minisculus is suggested for the control of phytophagous mites. This paper is contribution No. 335/91.06.02R, Research Station, Agriculture Canada, Saint-Jean-sur-Richelieu, Québec, Canada.  相似文献   

8.
??Antonovka?? has long been recognised as a major source of scab (Venturia inaequalis) resistance useful for apple breeding worldwide. Both major gene resistances in the form of the Rvi10 and Rvi17 and quantitative resistance, collectively identified as VA, have been identified in different accessions of ??Antonovka??. Most of the ??Antonovka?? scab resistance used in apple-breeding programmes around the world can be traced back to Schmidt ??Antonovka?? and predominantly its B VIII progenies 33,25 (PI 172623), 34,6 (PI 172633), 33,8 (PI 172612) and 34,5 (PI 172632). Using genetic profile reconstruction, we have identified ??common ??Antonovka?? ?? as the progenitor of the B VIII family, which is consistent with it having been a commercial cultivar in Poland and the single source of scab resistance used by Dr. Martin Schmidt. The major ??Antonovka?? scab resistance genes mapped to date are located either very close to Rvi6, or about 20?C25?cM above it, but their identities need further elucidation. The presence of the 139?bp allele of the CH-Vf1 microsatellite marker known to be associated with Rvi17 (Va1) in most of the ??Antonovka?? germplasm used in breeding suggests that it plays a central role in the resistance. The nature and the genetic relationships of the scab resistance in these accessions as well as a number of apple cultivars derived from ??Antonovka??, such as, ??Freedom??, ??Burgundy?? and ??Angold??, are discussed. The parentage of ??Reglindis?? is unclear, but the cultivar commercialised as ??Reglindis?? was confirmed to be an Rvi6 cultivar.  相似文献   

9.
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, β-amylase is considered one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. The present experiment showed that β-amylase activity was progressively increasing concomitantly with decreasing starch concentrations during apple (Malus domestica Borkh cv. Starkrimson) fruit development. The apparent amount of β-amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The subcellular-localization studies via immunogold electron-microscopy technique showed that β-amylase visualized by gold particles was predominantly located in plastids especially at periphery of starch granules, but the gold particles were scarcely found in other subcellular compartments. These data proved for the first time that the enzyme is compartmented in its functional sites in plant living cells. The predominantly plastid-distributed pattern of β-amylase in cells was shown unchanged throughout the fruit development. The density of gold particles (β-amylase) in plastids was increasing during the fruit development, which is consistent with the results of Western blotting. So it is considered that β-amylase is involved in starch hydrolysis in plastids of the fruit cells.  相似文献   

10.
Starch degradation in cells is closely associated with cereal seed germination, photosynthesis in leaves, carbohydrate storage in tuberous roots, and fleshy fruit development. Based on previously reported in vitro assays, p-amylase is considered one of the key enzymes catalyzing starch breakdown, but up to date its role in starch breakdown in living cells remains unclear because the enzyme was shown often extrachloroplastic in living cells. The present experiment showed that p-amylase activity was progressively increasing concomitantly with decreasing starch concentrations during apple (Malus domestica Borkh cv. Starkrimson) fruit development. The apparent amount of p-amylase assessed by Western blotting also increased during the fruit development, which is consistent with the seasonal changes in the enzyme activity. The subcellu-lar-localization studies via immunogold electron-microscopy technique showed that p-amylase visualized by gold particles was predominantly located in plastids especially at peri  相似文献   

11.
The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2)?=?0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.  相似文献   

12.
The annual shoots of apple and pear trees which accumulated a high concentration of arginine during the dormant stage also contained Nα-acylarginine derivatives. Nα-(2-Hydroxysuccinyl)arginine, Nα-(3-hydroxysuccinyl)arginine and Nα-oxalylarginine were found in apple trees, and Nα-succinylarginine and Nα-(2-carboxymethyl-2-hydroxysuccinyl)arginine, besides the former three, were found in pear trees. Nα-(3-Hydroxysuccinyl)arginine, Nα-oxalylarginine and Nα-succinylarginine are new arginine derivatives.  相似文献   

13.
Apple exhibits gametophytic self-incompatibility (GSI) that is controlled by the multiallelic S-locus. This S-locus encodes polymorphicS ribonuclease (S-RNase) for the pistil-part 5 determinant. Information aboutS-genotypes is important when selecting pollen donors for fruit production and breeding of new cultivars. We determined the 5-genotypes of ‘Charden’ (S2S3S4), ‘Winesap’ (S1S28), ‘York Imperial’ (S2S31), ‘Stark Earliblaze’ (S1S28), and ‘Burgundy’ (S20S32), byS-RNase sequencing and S-allele-specific PCR analysis. Two newS-RNases, S31 and S32, were also identified from ‘York Imperial’ and ‘Burgundy’, respectively. These newS-alleles contained the conserved eight cysteine residues and two histidine residues essential for RNase activity. Whereas S31 showed high similarity to S20 (94%), S32 exhibited 58% (to S24) to 76% (to S25) similarity in the exon regions. We designed newS-allele-specific primers for amplifying S31- and S32-RNasc-specific fragments; these can serve as specific gene markers. We also rearranged the apple S-allele numbers containing those newS-RNases. They should be useful, along with anS-RNase-based PCR system, in determining S-genotypes and analyzing new alleles from apple cultivars.  相似文献   

14.
The effects of humic substances on in vitro culture of Golden Delicious apple are reported. Potassium humate (KH) when used in proliferation showed a negative interaction with BA while it enhanced rooting when IBA was not present in the culture medium. In the presence of IBA, KH increased root number and reduced root growth. The highest concentration tested, 500 mg l-1, caused a drastic reduction in root system development. 50 mg l-1 KH hastened rooting and plants grew more rapidly when transferred to soil.  相似文献   

15.
Methyl jasmonate (JAMe) vapors (8 ppm) for 4 h at 25°C dramatically increased Golden Delicious apple peel -carotene synthesis by nearly threefold to 35 ng/mm2, while control fruits remained nearly constant at 11 ng/mm2 during the 10 day measurement period. Chlorophyll a and to a lesser extent chlorophyll b and lutein degradation were accelerated by JAMe treatment, but all showed some recovery after 6 days. Peel chlorophyll ab ratio held almost constant at 4.2–4.5 in control fruits during 10 days, while JAMe-treated apple chl ab ratio decreased linearly to 2.9 during 10 days.  相似文献   

16.
17.
A gene encoding attacin E, an inducible antibacterial protein from Hyalophora cecropia pupae, was cloned into the pRSETB Escherichia coli expression vector under the control of the T7 promoter. The resulting vector, pRSETBAtt, produced a fusion protein in E. coli JM109 of attacin with an N-terminal peptide containing six histidine residues in tandem. Fusion attacin was purified from cell lysates (6–9 mg l–1) by Ni2+-Sepharose affinity chromatography. Purified attacin protein was used as antigen to produce polyclonal antibody to detect attacin expressed in transgenic apple. Antibody capture immunoassay and immunoblot assays indicated that polyclonal antisera derived from fusion attacin had specific immunoreaction against attacins in the hemolymph of immunized pupae and attacin expressed in transgenic apple lines similar to native attacin antisera. Attacin expressed in transgenic apple could be quantified using immunoblot assays with the fusion attacin polyclonal antibody.  相似文献   

18.
Herzog K  Flachowsky H  Deising HB  Hanke MV 《Gene》2012,498(1):41-49
Production of marker-free genetically modified (GM) plants is one of the major challenges of molecular fruit breeding. Employing clean vector technologies, allowing the removal of undesired DNA sequences from GM plants, this goal can be achieved. The present study describes the establishment of a clean vector system in apple Malus×domestica Borkh., which is based on the use of the neomycin phosphotransferase II gene (nptII) as selectable marker gene and kanamycin/paramomycin as selective agent. The nptII gene can be removed after selection of GM shoots via site-specific excision mediated by heat-shock-inducible expression of the budding yeast FLP recombinase driven by the soybean Gmhsp17.5-E promoter. We created a monitoring vector containing the nptII and the flp gene as a box flanked by two direct repeats of the flp recognition target (FRT) sites. The FRT-flanked box separates the gusA reporter gene from the Cauliflower Mosaic Virus 35S (CaMV 35S) promoter. Consequently, GUS expression does only occur after elimination of the FRT-flanked box. Transformation experiments using the monitoring vector resulted in a total of nine transgenic lines. These lines were investigated for transgenicity by PCR, RT-PCR and Southern hybridization. Among different temperature regimes tested, exposure to 42 °C for 3.5 to 4h led to efficient induction of FLP-mediated recombination and removal of the nptII marker gene. A second round of shoot regeneration from leaf explants led to GM apple plants completely free of the nptII gene.  相似文献   

19.
20.
Apple pomace is a wasted resource produced in China in large quantities, disposal of which has caused serious environmental problems. In order to make the best of this residue, apple pomace together with cottonseed powder was used as a raw material to produce β-mannanase in solid-state fermentation (SSF) by Aspergillus niger SN-09. Optimization of fermentation conditions for maximizing β-mannanase production was carried out using Plackett-Burman and Central Composite designs. A mixture of apple pomace and cottonseed powder (3:2, w/w) with 59.2 % (w/w) initial moisture, together with certain ionic compounds and salts, proved to be the optimal medium. The test fungi were inoculated in the optimized medium and incubated at 30°C for 48 h. The activity of β-mannanase reached 561.3 U/g, an increase of 45.7 % compared with that in basal medium, and reached the same level of production as that achieved using wheat bran and soybean meal as raw materials as in most factories in China. This is the first report of the use of apple pomace as a raw material to produce β-mannanase in SSF. This will not only reduce the production cost of β-mannanase, but also represents a new and effective way to make the best use of apple pomace, which can consequently help to reduce the environmental pollution caused by this waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号