首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self‐association of sterile alpha motifs (SAMs) into a helical polymer architecture is a critical functional component of many different and diverse array of proteins. For the Drosophila Polycomb group (PcG) protein Polyhomeotic (Ph), its SAM polymerization serves as the structural foundation to cluster multiple PcG complexes, helping to maintain a silenced chromatin state. Ph SAM shares 64% sequence identity with its human ortholog, PHC3 SAM, and both SAMs polymerize. However, in the context of their larger protein regions, PHC3 SAM forms longer polymers compared with Ph SAM. Motivated to establish the precise structural basis for the differences, if any, between Ph and PHC3 SAM, we determined the crystal structure of the PHC3 SAM polymer. PHC3 SAM uses the same SAM–SAM interaction as the Ph SAM sixfold repeat polymer. Yet, PHC3 SAM polymerizes using just five SAMs per turn of the helical polymer rather than the typical six per turn observed for all SAM polymers reported to date. Structural analysis suggested that malleability of the PHC3 SAM would allow formation of not just the fivefold repeat structure but also possibly others. Indeed, a second PHC3 SAM polymer in a different crystal form forms a sixfold repeat polymer. These results suggest that the polymers formed by PHC3 SAM, and likely others, are dynamic. The functional consequence of the variable PHC3 SAM polymers may be to create different chromatin architectures. Proteins 2014; 82:2823–2830. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site‐specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP‐binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP‐binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP‐binding residues in the central portion of the transposase coding region. This clone, amino acids 275–409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP‐binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N‐terminal THAP DNA‐binding domain attached to an extended leucine zipper coiled‐coil dimerization domain in the P element transposase, precisely delineating the DNA‐binding and dimerization activities on the primary sequence. This study highlights the use of a GFP‐based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions.  相似文献   

5.
The G protein-coupled receptor (GPCR) Proteolysis Site (GPS) of cell-adhesion GPCRs and polycystic kidney disease (PKD) proteins constitutes a highly conserved autoproteolysis sequence, but its catalytic mechanism remains unknown. Here, we show that unexpectedly the ~40-residue GPS motif represents an integral part of a much larger ~320-residue domain that we termed GPCR-Autoproteolysis INducing (GAIN) domain. Crystal structures of GAIN domains from two distantly related cell-adhesion GPCRs revealed a conserved novel fold in which the GPS motif forms five β-strands that are tightly integrated into the overall GAIN domain. The GAIN domain is evolutionarily conserved from tetrahymena to mammals, is the only extracellular domain shared by all human cell-adhesion GPCRs and PKD proteins, and is the locus of multiple human disease mutations. Functionally, the GAIN domain is both necessary and sufficient for autoproteolysis, suggesting an autoproteolytic mechanism whereby the overall GAIN domain fine-tunes the chemical environment in the GPS to catalyse peptide bond hydrolysis. Thus, the GAIN domain embodies a unique, evolutionarily ancient and widespread autoproteolytic fold whose function is likely relevant for GPCR signalling and for multiple human diseases.  相似文献   

6.
AIMS: The aim of study was to clarify whether the polycystic kidney disease (PKD) domain of chitinase A (ChiA) participates in the hydrolysis of powdered chitin. METHODS AND RESULTS: Site-directed mutagenesis of the conserved aromatic residues of PKD domain was performed by PCR. The aromatic residues, W30, Y48, W64 and W67, were replaced by alanine, and single- and double-mutant chitinases were produced in Escherichia coli XL10 and purified with HisTrap column. Single mutations were not quite effective on the hydrolysing activities against chitinous substrates when compared with wild-type ChiA. However, mutations of W30 and W67 decreased the activities against powdered chitin by 87.6%. Wild-type and mutant PKD domains were produced in E. coli TOP10 and purified with glutathione-Sepharose 4B column. Wild-type PKD domain showed significant binding activity to powdered chitin, whereas mutations of W30 and W67 reduced the binding activity to powdered chitin drastically. These results suggest that PKD domain of ChiA is essential for effective hydrolysis of powdered chitin through the interaction between two aromatic residues and chitin molecule. CONCLUSIONS: PKD domain of ChiA participates in the effective hydrolysis of powdered chitin through the interaction between two aromatic residues (W30 and W67) and chitin molecule. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this study provide important information on chitin degradation by microbial chitinases.  相似文献   

7.
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7 Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as “a” and “d”) and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750 nM. Conversely, mutation of the “a” and “d” residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9 μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.  相似文献   

8.
A human gene previously identified as a partial cDNA homologous to the gene of RET finger protein was characterized. Northern hybridization detected three messages of 3.3, 4.2, and 7.5kb. The coding sequences of the more abundant of the three messages, the 4.2 and the 3.3kb, were determined. The former encodes a 630 amino acid protein (TRIM41) and the latter a 518 amino acid protein (TRIM41). Green fluorescent protein (GFP) fusions of full-length TRIM41 and TRIM41 were both observed as speckles in the cytoplasm and the nucleus. The result was corroborated by Western analysis of cellular fractions. Results with GFP fusions of various segments of the TRIM41 proteins indicated that the nuclear transport of the proteins is mediated by an N-terminal segment common to both isoforms, but independent of a classical nuclear localization signal sequence.  相似文献   

9.
The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.  相似文献   

10.
Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditiselegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylusvulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgariscpl-1 rescued the embryonic lethal phenotype of the C.eleganscpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.  相似文献   

11.
The structural study of peptides belonging to the terminal domains of histone H1 can be considered as a step toward the understanding of the function of H1 in chromatin. The conformational properties of the peptide Ac-EPKRSVAFKKTKKEVKKVATPKK (CH-1), which belongs to the C-terminal domain of histone H1(o) (residues 99-121) and is adjacent to the central globular domain of the protein, were examined by means of 1H-NMR and circular dichroism. In aqueous solution, CH-1 behaved as a mainly unstructured peptide, although turn-like conformations in rapid equilibrium with the unfolded state could be present. Addition of trifluoroethanol resulted in a substantial increase of the helical content. The helical limits, as indicated by (i,i + 3) nuclear Overhauser effect (NOE) cross correlations and significant up-field conformational shifts of the C(alpha) protons, span from Pro100 to Val116, with Glu99 and Ala117 as N- and C-caps. A structure calculation performed on the basis of distance constraints derived from NOE cross peaks in 90% trifluoroethanol confirmed the helical structure of this region. The helical region has a marked amphipathic character, due to the location of all positively charged residues on one face of the helix and all the hydrophobic residues on the opposite face. The peptide has a TPKK motif at the C-terminus, following the alpha-helical region. The observed NOE connectivities suggest that the TPKK sequence adopts a type (I) beta-turn conformation, a sigma-turn conformation or a combination of both, in fast equilibrium with unfolded states. Sequences of the kind (S/T)P(K/R)(K/R) have been proposed as DNA binding motifs. The CH-1 peptide, thus, combines a positively charged amphipathic helix and a turn as potential DNA-binding motifs.  相似文献   

12.
The use of protein fusion tag technology simplifies and facilitates purification of recombinant proteins. In this article, we have found that the starch-binding domain derived from Rhizopus oryzae glucoamylase (RoSBD), a member of carbohydrate-binding module family 21 (CBM21) with raw starch-binding activity, is favorable to be applied as an affinity tag for fusion protein engineering and purification in Escherichia coli and Pichia pastoris systems. To determine suitable spatial arrangement of RoSBD as a fusion handle, enhanced green fluorescent protein (eGFP) was fused to either the N- or C-terminus of the SBD, expressed by E. coli, and purified for yield assessment and functional analysis. Binding assays showed that the ligand-binding capacity was fully retained when the RoSBD was engineered at either the N-terminal or the C-terminal end. Similar results have been obtained with the RoSBD-conjugated phytase secreted by P. pastoris. The effective adsorption onto raw starch and low cost of starch make RoSBD practically applicable in terms of development of a new affinity fusion tag for recombinant protein engineering in an economic manner.  相似文献   

13.
The human immunodeficiency virus 1 (HIV-1) Nef protein is a pathogenicity factor required for effective progression to AIDS, which modulates host cell signaling pathways and T-cell receptor internalization. We have determined the crystal structure of Nef, allele SF2, in complex with an engineered SH3 domain of human Hck showing unnaturally tight binding and inhibitory potential toward Nef. This complex provides the most complete Nef structure described today, and explains the structural basis of the high affinity of this interaction. Intriguingly, the 33-residue C-terminal flexible loop is resolved in the structure by its interactions with a highly conserved hydrophobic groove on the core domain of an adjacent Nef molecule. The loop mediates the interaction of Nef with the cellular adaptor protein machinery for the stimulated internalization of surface receptors. The endocytic dileucine-based sorting motif is exposed at the tip of the acidic loop, giving the myristoylated Nef protein a distinctly dipolar character. The intermolecular domain assembly of Nef provides insights into a possible regulation mechanism for cargo trafficking.  相似文献   

14.
The red fluorescent protein DsRed2 is a useful fusion tag for various proteins, together with the enhanced green fluorescent protein (EGFP). These chromoproteins have spectral properties that allow simultaneous distinctive detection of tagged proteins in the same single cells by dual color imaging. We used them for tagging a secretory protein, human interferon-beta (IFN-beta). Expression plasmids for human IFN-beta tagged with DsRed2 or with EGFP at the carboxyl terminal were constructed and their coexpression was examined in Mardin-Darby canine kidney epithelial cells. Although maturation of DsRed2 for coloration was slow and the color intensity was weak compared with EGFP, low temperature treatment (20 degrees C) allowed DsRed2-tagged human IFN-beta to be detected in the cells using color imaging. Consequently, the two chimeric proteins were shown to be colocalized in the same single cells by dual color confocal microscopy. This approach will be useful for investigating subcellular localization of not only cell resident proteins but also secretory proteins.  相似文献   

15.
G-protein alpha subunits consist of two domains: a Ras-like domain also called GTPase domain (GTPaseD), structurally homologous to monomeric G-proteins, and a more divergent domain, unique to heterotrimeric G-proteins, called helical domain (HD). G-protein activation, requires the exchange of bound GDP for GTP, and since the guanine nucleotide is buried in a deep cleft between both domains, it has been postulated that activation may involve a conformational change that will allow the opening of this cleft. Therefore, it has been proposed, that interdomain interactions are playing an important role in regulating the nucleotide exchange rate of the alpha subunit. While constructing different Gs(alpha) quimeras, we identified a Gs(alpha) random mutant, which was very inefficient in stimulating adenylyl cyclase activity. The introduced mutation corresponded to the substitution of Ser(111) for Asn (S111N), located in the carboxi terminal end of helix A of the HD, a region neither involved in AC interaction nor in the interdomain interface. In order to characterize this mutant, we expressed it in bacteria, purified it by niquel-agarose chromatography, and studied its nucleotide exchange properties. We demonstrated that the recombinant S111N Gs(alpha) was functional since it was able to undergo the characteristic conformational change upon GTP binding, detected by the acquisition of a trypsin-resistant conformation. When the biochemical properties were determined, the mutant protein exhibited a reduced GDP dissociation kinetics and as a consequence a slower GTPgammaS binding rate that was responsible for a diminished adenylyl cyclase activation when GTPgammaS was used as activator. These data provide new evidence that involves the HD as a regulator of Gs(alpha) function, in this case the alphaA helix, which is not directly involved with the nucleotide binding site nor the interdomain interface.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin‐1 (PC1) and polycystin‐2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C‐terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self‐oligomerization. Dimerization‐defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM‐endoplasmic reticulum (ER) junctions but could still function as ER Ca2+‐release channels. Expression of dimerization‐defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C‐terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER‐localized PC2 channels. Mutations that affect PC2 C‐terminal homo‐ and heteromerization are the likely molecular basis of cyst formation in ADPKD.  相似文献   

17.
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.  相似文献   

18.
We investigated the ability of the N-terminal domain of InaK, an ice nucleation protein from Pseudomonas syringae KCTC1832, to act as an anchoring motif for the display of foreign proteins on the Escherichia coli cell surface. Total expression level and surface display efficiency of green fluorescent protein (GFP) was compared following their fusion with either the N-terminal domain of InaK (InaK-N), or with the known truncated InaK containing both N- and C-terminal domains (InaK-NC). We report that the InaK-N/GFP fusion protein showed a similar cell surface display efficiency ( approximately 50%) as InaK-NC/GFP, demonstrating that the InaK N-terminal region alone can direct translocation of foreign proteins to the cell surface and can be employed as a potential cell surface display motif. Moreover, InaK-N/GFP showed the highest levels of total expression and surface display based on unit cell density. InaK-N was also successful in directing cell surface display of organophosphorus hydrolase (OPH), confirming its ability to act as a display motif.  相似文献   

19.
A variety of G-proteins and GTPases are known to be involved in nucleolar function. We describe here a new evolutionarily conserved putative human GTPase, guanine nucleotide binding protein-like 3-like (GNL3L). Genes encoding proteins related to GNL3L are present in bacteria and yeast to metazoa and suggests its critical role in development. Conserved domain search analysis revealed that the GNL3L contains a circularly permuted G-motif described by a G5-G4-G1-G2-G3 pattern similar to the HSR1/MMR1 GTP-binding protein subfamily. Highly conserved and critical residues were identified from a three-dimensional structural model obtained for GNL3L using the crystal structure of an Ylqf GTPase from Bacillus subtilis. We demonstrate here that GNL3L is transported into the nucleolus by a novel lysine-rich nucleolar localization signal (NoLS) residing within 1-50 amino acid residues. NoLS identified here is necessary and sufficient to target the heterologous proteins to the nucleolus. We show for the first time that the lysine-rich targeting signal interacts with the nuclear transport receptor, importin-beta and transports GNL3L into the nucleolus. Interestingly, depletion of intracellular GTP blocks GNL3L accumulation into the nucleolar compartment. Furthermore, mutations within the G-domains alter the GTP binding ability of GNL3L and abrogate wild-type nucleolar retention even in the presence of functional NoLS, suggesting that the efficient nucleolar retention of GNL3L involves activities of both basic NoLS and GTP-binding domains. Collectively, these data suggest that GNL3L is composed of distinct modules, each of which plays a specific role in molecular interactions for its nucleolar retention and subsequent function(s) within the nucleolus.  相似文献   

20.
The metal-dependent protein phosphatase family (PPM) governs a number of signaling pathways. PPM1L, originally identified as a negative regulator of stress-activated protein kinase signaling, was recently shown to be involved in the regulation of ceramide trafficking at ER-Golgi membrane contact sites. Here, we identified acyl-CoA binding domain containing 3 (ACBD3) as an interacting partner of PPM1L. We showed that this association, which recruits PPM1L to ER-Golgi membrane contact sites, is mediated by a GOLD (Golgi dynamics) domain in ACBD3. These results suggested that ACBD3 plays a pivotal role in ceramide transport regulation at the ER-Golgi interface.

Structured summary of protein interactions

ACBD3 and PPM1Lcolocalize by fluorescence microscopy (View interaction)FYCO1physically interacts with PPM1L by pull down (View interaction)SEC14L2physically interacts with PPM1L by pull down (View interaction)ACBD3physically interacts with PPM1L by pull down (View interaction)SEC14L1physically interacts with PPM1L by pull down (View interaction)PPM1Lphysically interacts with ACBD3 by two hybrid (View interaction)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号