首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative changes in total leaf soluble proteins, proline, carbohydrate content, chlorophyll fluorescence, guaiacol peroxidase (POD) and catalase (CAT) activities were determined in a less cold-hardy (LCH) spring cv. Kohdasht (LT50 = −6°C), a semi cold-hardy (SCH) facultative cv. Azar 2 (LT50 = −15°C), and a cold-hardy (CH) winter cv. Norstar (LT50 = −26°C) of wheat (Triticum aestivum L.) exposed to 4°C for 9 weeks. Seedlings were grown in a controlled growth room for 14 days at 20°C and then transferred to 4°C (experimental day 0) for 63 days (cold treatment); otherwise they were maintained continuously at 20°C (control treatment). The samples were harvested 0, 2, 21, 28, 42, and 63 days after exposure to 4°C. The results showed significant low temperature (LT)-induced accumulation of total soluble proteins, proline, and carbohydrates and elevation in activities of CAT and POD in leaves of SCH and CH winter cultivars rather than in LCH spring cultivar. In contrast, the chlorophyll fluorescence (F v/F m) declined during LT treatment irrespective of cultivar. The results suggest that developmental traits such as vernalization requirement of wheat affects on cold-tolerance expression system of plants.  相似文献   

2.
To gain a better understanding of cold acclimation process in wheat, we applied a 2-DE based proteomic approach to discover changes in proteome profile of a diploid wild wheat (Triticum urartu L.) during prolonged cold stress treatment. To this end, plants were grown in pots and the growing seedlings (4-leaf stage) were exposed to cold stress. After 4 weeks of cold acclimation (4–6 °C) and subsequent treatment for 12 h at ?2 °C, samples were collected from control and stressed plants and were subjected to proteome pattern analysis. Among approximately 450 reproducible protein spots displayed in each given 2-DE gels, 34 proteins changed significantly in abundance in response to cold stress. Among them, 25 and 9 proteins were up and down-regulated under stress condition, respectively. Analysis by matrix-assisted laser desorption ionization time of flight/time of flight mass spectrometry coupled with non-redundant protein database search allowed the identification of 20 cold-induced proteins. Integrated proteomic and database survey resulted in identification of several cold stress related proteins such as pathogenesis related protein, cold regulated protein, cold-responsive LEA/RAB-related COR protein, oxygen-evolving enhancer protein and oxalate oxidase. The presumed functions of the identified proteins were mostly related to cold acclimation, oxidative stress and photosynthesis. The possible implications of differentially accumulated proteins in acquiring systemic tolerance to freezing stress following exposure to prolonged low temperature will be discussed.  相似文献   

3.
The influence of short days and low temperature on the development of frost hardiness in seedlings of Scots pine (Pinus silvestris L.) and Norway spruce [Picea abies (L.) Karst.], grown for 6 months in glasshouses and climate chambers, was investigated. The degree of hardiness was estimated by freezing the shoots of the seedlings to predetermined temperatures. After 8 weeks in a glasshouse the viability of the seedlings was determined by establishing bud flushing. The most effective climate for the development of frost hardiness was short days (SD) and low temperature (2°C); the next most effective was SD and room temperature (20°C). However, long days (LD) and low temperature also had a marked effect on the development of hardiness. A combination of 3 weeks’treatment with SD and 20°C, and 3 weeks with SD and 2°C gave the same results as 6 weeks with SD and 2°C. The results clearly demonstrate the importance of the photoperiod prior to low temperature for the development of frost hardiness. In conclusion both short days and low temperature induce frost hardiness development. Probably this occurs by initiation of different processes in the two cases. The degree of frost hardiness development appears to depend on the sum of these different processes and on the timing between them.  相似文献   

4.
“Dongnongdongmai 1” is a cultivated winter wheat which can endure cold temperature as low as ?30 °C with a reviving rate of 85 %. We aimed to explore the involvement of antioxidant protection system in salicylic acid (SA)-enhanced cold resistance of winter wheat. Seedlings were prayed with 0.1 mM SA at three-leaf stage, followed by cold acclimation at tillering stage (4 °C for 5 days) prior to cold treatment at 4, 0, ?10 or ?20 °C for 2 days. Under low temperature, the relative electrical conductivity (REC) of rhizomes and H2O2 content in rhizomes were lower compared with leaves, while in the reactive oxygen species (ROS) removal system, only the POD activity was higher. Foliar spray with SA significantly inhibited the cold-increased REC of rhizomes at ?20 °C and REC of leaves at ?10 and ?20 °C. In addition, application of SA prior to ?10 or ?20 °C treatment suppressed the increase in H2O2 content both in rhizomes and leaves. SA enhanced the activities of SOD, POD, and CAT in wheat following low-temperature treatment, especially at ?10 and ?20 °C. In addition, spray with SA resulted in 1.1-to-4.9-fold enhanced activities of the key enzymes in AsA–GSH cycle, including APX, DHAR, and MDHAR. Our results suggested that SA could improve the resistance of winter wheat against extreme low temperature by enhancing the activities of antioxidases to eliminate ROS and maintain the redox homeostasis. In addition, the less damage to rhizomes in comparison with leaves may be attributed to enhanced POD activity.  相似文献   

5.
Order parameters of chloroplast membrane lipids of rye wheat seedlings differing in cold hardiness were compared before after hardening. Seedlings grown at 25° exhibited similar membrane microviscosities. When hardened, the cultivars most resistant to freezing temperatures possessed the most fluid membranes, while those sensitive to cold were unable to alter them. Changes in linolenic acid levels alone cannot be responsible for the observed phenomena.  相似文献   

6.
A comparison of mitochondria isolated from 2 and 24 C grown winter wheat (Triticum aestivum L.) and winter rye (Secale cereale L.) seedlings revealed no correlation between changes in swelling and contraction characteristics and extent of cold hardiness. The swelling response changed markedly due to growth at low temperature, but the change was similar for the four cultivars examined. The swelling response was also observed to change rapidly during aging of isolated mitochondria, either at 2 or 24 C. Spontaneously swollen mitochondria, isolated from 24 C grown seedlings, contracted abruptly upon addition of certain oxidizable substrates, but this response was lost when seedlings were transferred from 24 to 2 C. Studies on the effect of various substrates and respiratory inhibitors on the swelling and contraction responses indicate that inhibitors which reduce or stop electron flow through the electron transport chain also inhibit substrate induced mitochondrial contraction.  相似文献   

7.
Indole-3-acetic acid (IAA) was purified by high performance liquid chromatography (HPLC) and identified by gas chromatography - mass spectrometry (GC-MS) in leaf extracts of Begonia × cheimantha Everett cv. Nova. The content of IAA and of gibberellins A4, A9, A19 and A20 (GAs) previously identified in this material, were quantified by GC-MS in leaves of Begonia plants grown under different temperature and daylength conditions, using deuterated compounds as internal standards. GA1, which was also identified, was present in too low quantities for reliable quantitation. Rapid and significant decreases (within 2–4 days) occurred in the content of both IAA and GAs when the plants were transferred from conditions which are non-inductive for adventitious bud formation and flowering (24°C/long day) to inductive conditions (24°C/short day, 15°C/long day or 15°C/short day). GA4 and GA9 were affected by photoperiod only, whereas IAA, GA19 and GA20 were affected by both photoperiod and temperature. The data suggest that biosynthesis of GA9 and GA4 are blocked in short days at a step located before GA9. Conversion of GA19 to GA20 seemed to be blocked by both short days and low temperature, while an additional block located before GA19 seemed to be imposed in 15°C/short day. The results confirm earlier results and support the hypothesis that photoperiod and temperature effects in Begonia are mediated by endogenous hormones.  相似文献   

8.
The study was focused on fatty acid (FA) composition of lipids from the seedlings and roots of crops having different cold resistance and grown at 27°C or 4°C. Biosynthesis of FA in the lipids of seedlings and roots of cold-susceptible maize (Zea mays L.) at both growth temperatures was controlled by chloroplast ω6 desaturase and microsomal ω6 desaturase, respectively. The content of linoleic acid was 56.2% and 43.3% in the coleoptiles of maize seedlings grown at 4 and 27°C, respectively, and in the roots it was 52.2% and 38.5%, respectively. The content of α-linolenoic acid in the coleoptiles was 6.7–6.8% at both temperatures, while in the root lipids it was higher at low temperature (3.15% at 27°C vs. 4.7% at 4°C). FA biosynthesis in the seedling coleoptiles of wheat (Triticum aestivum L.) and Siberian wild rye (Elymus sibiricus L.) grown at low temperature was controlled by the chloroplast ω3 desaturase. A minor increase in the content of α-linolenoic acid was observed at low temperature: 29.7% to 30.2% in wheat and 22.8% to 25.8% in wild rye. In the root tissues of these species, the biosynthesis of α-linolenoic acid was controlled by the microsomal ω3 desaturase. The content of α-linolenoic acid was higher at low temperature: in wheat it was 6.1% at 27°C and 17.1%, and 4°C, while in Siberian wild rye, 7.1% and 12.0% at 4 and 27°C, respectively.  相似文献   

9.
The dynamics of amidase, cysteine protease, and trypsin inhibitor activities were studied in the leaves of wheat (Triticum aestivum L.) seedlings grown under controlled conditions (25°C, illuminance 10 kLx, 14-h photoperiod) and subjected to cold hardening (5°C, 10 kLx, 14-h photoperiod). Changes in the activity of amidases and cysteine proteases proved to precede an increase in cold resistance during cold hardening and a decrease in cold resistance after the end of cold hardening. The activity of trypsin inhibitors changed only during cold hardening. It is suggested that amidases, cysteine proteases, and trypsin inhibitors are involved in the cold adaptation of plants.  相似文献   

10.
Orchard-grown dwarf apple (Malus domestica Borkh.) trees selected from a hybrid population were propagated by tissue culture but had a growth pattern similar to standard cv. Golden Delicious plants when grown at constant 27°C instead of the expected dwarf pattern of growth. Shoot elongation was markedly reduced, with or without gibberellin A1 (GA1) or GA4 treatment, when trees were grown in an environment where day temperature was maintained at 35°C for 2 h in a ramped regime (night 20°C day ramped to 35°C, held for 2 h and ramped down to 20°C night over a 14-h photoperiod). Application of GA1 or GA4 partially overcame growth retardation resulting from prior paclobutrazol treatment of both standard and dwarf trees grown at constant 27°C and of standard trees grown in the ramped environment. However, these GAs had no effect on paclobutrazol-treated or untreated dwarfs grown in the ramped regime. Gas chromatography-mass spectrometry with labelled internal standards was used to quantify GA1, GA3, GA8, GA19, GA20 and GA29 in extracts from standard and dwarf plants grown either at a constant 27°C or in a 20-30-20°C ramped temperature regime. Standard plants, which elongate quite rapidly in either environment, had similar levels of these GAs in both temperature regimes. The slowly growing dwarfs in the ramped temperature environment contained three times more GA19 than the rapidly elongating dwarfs grown at 27°C. The concentrations of the other GAs were reduced to ca 40% or less in plants grown in the ramped temperature regime compared with those grown at 27°C. These data suggest that shoot elongation of dwarf plants is sensitive to elevated temperatures both as a result of reduced responsiveness to GAs and because of a reduction in the concentration of GA1, apparently as a result of a lower rate of conversion of GA19 to GA20. It is possible that the altered GA metabolism may be a consequence of the change in GA sensitivity.  相似文献   

11.
For trees, the ability to obtain and maintain sufficient levels of frost hardiness in late autumn, winter and spring is crucial. We report that temperatures during dormancy induction influence bud set, frost hardiness, tolerance to cold storage, timing of bud burst and spring frost hardiness in seedlings of Norway spruce (Picea abies (L.) Karst.). Bud set occurred later in 12°C than in 21°C, and later in cool nights (7°C) than in constant temperature. One weekly frost night (−2.5°C) improved frost hardiness. Cool nights reduced frost hardiness early, but improved hardiness later during cold acclimation. Buds and stems were slightly hardier in 21°C than in 12°C, while needles were clearly hardier in 12°C. Cold daytime temperature, cool nights and one weekly frost night improved cold storability (0.7°C). Seedlings receiving high daytime temperatures burst buds later, and were less injured by light frost some days after bud burst.  相似文献   

12.
The effect of 24-epibrassinolide (BR27) on cold resistance of rape seedlings was studied by ion leakage and photosynthetic pigment degradation measurements. Aqueous solutions of BR27 were injected into cotyledons or primary leaves of rape plants and these plants were incubated at 2 °C or 20 °C. Cold treatment (2 °C) without BR27 injection elevated the membrane permeability in both primary leaves and cotyledons significantly. Surprisingly, injection of leaves with water or 0.467 % aqueous ethanol solution led to a massive increase in membrane permeability after cold stress at 2 °C. The synergistic effect of leaf infiltration and cold on permeability was abolished by 0.05 and 1.00 μM of BR27 in primary leaves and by 1.00 μM of BR27 in cotyledons. On the other hand, BR27 solutions strongly elevated the membrane permeability at 20 °C, while water and ethanol solutions brought about only negligible increases. Water or ethanol infiltrations strongly reduced the leaf contents of chlorophyll (Chl) a, Chl b and carotenoids at 2 °C but less markedly at 20 °C. However, in seedlings exposed to 2 °C pigments content was significantly higher in BR27-treated leaves as compared to water/ethanol control. There were no differences between pigment contents of leaves injected with BR27 solutions or only water/ethanol at 20 °C. The above data strongly support the stress protecting effect of BR27.  相似文献   

13.
The purpose of this work was to examine environmental control of expression, at the mRNA level, of cold-inducible genes and to test the relationship of the expression of the genes to cold acclimation. Barley plants (Hordeum vulgare L. cv. Igri) at the three- to four-leaf stage were (a) grown in different temperature environments between 20/15°C and +4/-4°C or (b) transferred between 20/15°C and 6/2°C or (c) grown under drought or nutrient stress conditions. Frost hardiness (using a regrowth method) and mRNA levels for three cold-induced genes, blt4-9, blt14 and blt101, from meristematic crown tissue (vegetative shoot meristem plus subtending stem and associated root initials) were measured. Hardiness and levels of blt4-9, blt14 and blt101 mRNAs increased with lower growth temperatures, below a maximum inductive temperature. Prior temperature environment and plant age affected the rate of change in mRNA levels of these genes in response to a change of temperature environment. Hardiness was strongly correlated with mRNA levels of these genes in plants grown in different temperature environments. This correlation did not extend to plants exposed to drought or nutrient stresses. Implications are drawn for plant responses to a warmer climate.  相似文献   

14.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

15.
Meaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion‐weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L. Norstar). Differential thermal analysis, ice nucleation, and localization studies identified three distinct exothermic events. A high‐temperature exotherm (?3°C to ?5°C) corresponded with ice formation and high ice‐nucleating activity in the leaf sheath encapsulating the crown. A midtemperature exotherm (?6°C and ?8°C) corresponded with cavity ice formation in the VTZ but an absence of ice in the shoot apical meristem (SAM). A low‐temperature exotherm corresponded with SAM injury and the killing temperature in wheat (?21°C) and rye (?27°C). The SAM had lower ice‐nucleating activity and freezing survival compared with the VTZ when frozen in vitro. The intermediate zone was hypothesized to act as a barrier to ice growth into the SAM. Higher cold hardiness of rye compared with wheat was associated with higher VTZ and intermediate zone desiccation resulting in the formation of ice barriers surrounding the SAM.  相似文献   

16.
Abstract Water stress at a nonacclimating temperature (18–20°C) increased the cold hardiness of Medicagosativa L. (alfalfa) plants. This increased cold hardiness was retained when the previously water-stressed plants were cold acclimated (2–9°C) in the absence of water stress. Water stress during cold acclimation also increased cold hardiness. Alfalfa was demonstrated to suffer injury, measured as decreased growth following freezing, at sub-lethal temperatures. During cold acclimation the turgor potential (ψ) of watered plants increased, whereas the solute potential and the water content per unit dry weight decreased. The large positive psgrdap of acclimated plants indicates that the decreased water content per unit dry weight is related to an increased proportion of tissue dry matter rather than to tissue dehydration.  相似文献   

17.
Winter canola (Brassica napus cv Crystal) is an oilseed crop that requires vernalization (chilling treatment) for the induction of stem elongation and flowering. To investigate the role of gibberellins (GAs) in vernalization-induced events, endogenous GA content and the metabolism of [3H]GAs were examined in 10-week vernalized and nonvernalized plants. Shoot tips were harvested 0, 8, and 18 d postvernalization (DPV), and GAs were purified and quantified using 2H2-internal standards and gas chromatography-selected ion monitoring. Concentrations of GA1, GA3, GA8, GA19, and GA20 were 3.1-, 2.3-, 7.8-, 12.0-, and 24.5-fold higher, respectively, in the vernalized plants at the end of the vernalization treatment (0 DPV) relative to the nonvernalized plants. Thermoregulation apparently occurs prior to GA19 biosynthesis, since vernalization elevated the concentration of all of the monitored GAs. [3H]GA20 or [3H]GA1 was applied to the shoot tips of vernalized and nonvernalized plants, and after 24 h, plants were harvested at 6, 12, and 15 DPV. Following high-performance liquid chromatography analyses, vernalized plants showed increased conversion of [3H]GA20 to a [3H]GA1-like metabolite and reduced conversion of [3H]GA1 or [3H]GA20 to polar 3H-metabolites, putative glucosyl conjugates. These results demonstrate that vernalization influences GA content and GA metabolism, with GAs serving as probable regulatory intermediaries between chilling treatment and subsequent stem growth.  相似文献   

18.
  • Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho‐anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold‐hardening ability.
  • A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA‐Pincén) and spring (Buck‐Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature.
  • Cold‐grown plants had shorter leaves but longer inter‐stomatal epidermal cells than warm‐grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three‐fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C.
  • The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold‐induced compact morphology and cold hardening. New insights are presented on the potential temperature‐driven role of peroxidases and hemicellulose in cell wall dynamics of grasses.
  相似文献   

19.
20.
The objective of this study was to investigate the effect of selenium (Se) supply (0, control; 2.5, 5, 10, or 20 μM) on cucumber (Cucumis sativus L.) cv. Polan F1 plants grown under short-term low temperature stress. About 14–16 day-old seedlings, grown at an optimal temperature (25/20°C; day/night), were exposed to short-term chilling stress with a day/night temperature of 10°C/5°C for 24 h, for a further 24 h at 20°C/15°C, and then transferred to 25/20°C (re-warming) for 7 days. Se did not affect the fresh weight (FW) of plants at a concentration of 2.5–10 μM, but in the presence of 20 μM Se, the biomass of shoots significantly decreased. The contents of chlorophylls and carotenoids witnessed no significant change after Se supplementation. Compared with the control, the Se-treated plants showed an increase of proline content in leaves, once after chilling and again after 7 days of re-warming. However, proline levels were much higher immediately after chilling than after re-warming. The malondialdehyde (MDA) content in the root of plants treated with 2.5–10 μM Se decreased directly after stress. This was in comparison with the plants grown without Se, whereas it increased in roots and leaves of plants exposed to 20 μM Se. Seven days later, the MDA level in the root of plants grown in the presence of Se was still lower than those of plants not treated with Se and generally witnessed no significant change in leaves. Although Se at concentrations of 2.5–10 μM modified the physiological response of cucumber to short-term chilling stress, causing an increase in proline content in leaves and diminishing lipid peroxidation in roots, the resistance of plants to low temperature was not clearly enhanced, as concluded on the basis of FW and photosynthetic pigments accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号