首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A flat revertant, R1, was isolated from human activated c-Ha-ras-1 (hu-ac-Ha-ras) gene-transformed NIH 3T3 cells (EJ-NIH 3T3) treated with mutagens. R1 contained unchanged transfected hu-ac-Ha-ras DNA and expressed high levels of hu-ac-Ha-ras-specific mRNA and p21 protein. Transfection experiments revealed that NIH 3T3 cells could be transformed by DNA from R1 cells but R1 cells could not be retransformed by Kirsten sarcoma virus, DNA from EJ-NIH 3T3 cells, hu-ac-Ha-ras, v-src, v-mos, simian virus 40 large T antigen, or polyomavirus middle T antigen. Somatic cell hybridization studies showed that R1 was not retransformed by fusion with NIH 3T3 cells and suppressed anchorage independence of EJ-NIH 3T3 and hu-ac-Ha-ras gene-transformed rat W31 cells in soft agar. These results suggest that the reversion and resistance to several oncogenes in R1 is due not to cellular defects in the production of the transformed phenotype but rather to enhancement of cellular mechanisms that suppress oncogenic transformation.  相似文献   

2.
3.
Expression of Nanog gene promotes NIH3T3 cell proliferation   总被引:9,自引:0,他引:9  
Cells are the functional elements in tissue engineering and regenerative medicine. A large number of cells are usually needed for these purposes. However, there are numbers of limitations for in vitro cell proliferation. Nanog is an important self-renewal determinant in embryonic stem cells. However, it remains unknown whether Nanog will influence the cell cycle and cell proliferation of mature cells. In this study, we expressed Nanog in NIH3T3 cells and showed that expression of Nanog in NIH3T3 promoted cells to enter into S phase and enhanced cell proliferation. This suggests that Nanog gene might function in a similar fashion in mature cells as in ES cells. In addition, it may provide an approach for in vitro cell expansion.  相似文献   

4.
Summary The addition of serum to quiescent NIH 3T3 mouse cell cultures resulted in a 10- to 20-fold increase of Rb influx which was resistant to ouabain, and only a three- to fourfold activation of ouabain-sensitive Rb influx. Stimulation of the ouabain-resistant Rb influx following serum addition reached its maximum within 2 min. The stimulation of ouabain-resistant Rb influx was a result ofV m increase while theK m for Rb was unchanged. Ouabain-resistant Rb influx, after serum addition, was resistant to amiloride and sensitive to ethacrinic acid. Replacing chloride in the medium by NO3 , CO3 and CH3COO resulted in a drastic decrease in the ouabain-resistant Rb influx. It appeared, therefore, that the ouabain-resistant Rb influx in NIH 3T3 cells was Cl-dependent.  相似文献   

5.
Lu Y  Liu S  Zhang S  Cai G  Jiang H  Su H  Li X  Hong Q  Zhang X  Chen X 《Molecules and cells》2011,31(3):225-230
Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays various roles in cell growth in different cell types. However, few studies have focused on TIMP-1’s effect on fibroblast cells. In this study, we investigated the effects of TIMP-1 overexpression on NIH3T3 fibroblast proliferation and potential transduction signaling pathways involved. Overexpression of TIMP-1, by transfection of the pLenti6/V5-DESTTIMP-1 plasmid, significantly promoted NIH3T3 proliferation as determined by the BrdU array. Neither 5 nor 15 nM GM6001 (matrix metalloproteinase system inhibitor) affected NIH3T3 proliferation, but 45 nM GM6001 inhibited proliferation. TIMP-1 overexpression activated the p-Akt pathway, but not the p-ERK or p-p38 pathway. In TIMP-1-transfected cells, cyclinD1 was upregulated and p21CIP1 and p27KIP1 were downregulated, which promoted cell entry into the S and G2/M phases. The PI3-K inhibitor LY294002 abolished the TIMP-1-induced effects. Overexpression of intracellular TIMP-1 stimulated NIH3T3 fibroblast proliferation in a matrix metalloproteinase (MMP)-independent manner by activating the p-Akt pathway and related cell cycle progression.  相似文献   

6.
7.
The proliferogenic effect of the Ca++ ionophore A23187 was tested in dense non-starved 3T3 cells. Whereas continuous exposure during 48 h of cells to the ionophore at concentrations is larger than or equal to 0.4 muM cytotoxic, a short exposure for 30 s up to 4 min at 0.2 muM was proliferogenic. It was also found that such short exposures to the ionophore caused a transient increase in the intracellular level of cyclic GMP and a roughly simultaneously appearing decrease in the intracellular level of cyclic AMP.  相似文献   

8.
Sphingosine, a breakdown product of cellular sphingolipids, has recently been shown to stimulate DNA synthesis and act synergistically with known growth factors to induce proliferation of quiescent Swiss 3T3 fibroblasts (Hong, Z., Buckley, N. E., Gibson, K., and Spiegel, S. (1990) J. Biol. Chem. 265, 76-81). The present study demonstrates that mitogenic concentrations of sphingosine induce early increases in cytosolic phosphatidic acid, which is a potent mitogen for Swiss 3T3 cells. Structurally related analogs of sphingosine, such as N-stearoylsphingosine and other long chain aliphatic amines, did not mimic the mitogenic effect of sphingosine and did not elevate phosphatidic acid levels. Sphingosine not only stimulated [3H]thymidine incorporation with similar efficiency and kinetics as phosphatidic acid, it also induced similar morphological alterations. Both sphingosine and phosphatidic acid acted synergistically with a variety of growth factors, such as, insulin, epidermal growth factor, fibroblast growth factor, and 12-O-tetradecanoylphorbol 13-acetate. In sharp contrast, sphingosine and phosphatidic acid did not have additive or synergistic effects in either the presence or absence of other growth factors. Both sphingosine and phosphatidic acid stimulated DNA synthesis in cells made protein kinase C-deficient by prolonged treatment with phorbol ester and sphingosine still stimulated similar increases in phosphtidic acid in these cells. Furthermore, similar to the actions of phosphatidic acid on signal transduction in Swiss 3T3 cells, mitogenic concentrations of sphingosine also inhibit cAMP accumulation and trigger the hydrolysis of polyphosphoinositides. Our findings indicate that sphingosine and phosphatidic acid control cellular responses in Swiss 3T3 cells through a common pathway. In view of the prominent role of phosphatidic acid in signal transduction and cellular proliferation, our observations that sphingosine, at mitogenic concentrations, increases the level of phosphatidic acid and also mimics the effects of phosphatidic acid on signal transduction, have important implications for the mechanism of action of sphingosine.  相似文献   

9.
Substitution of asparagine for serine at position 17 decreased the affinity of rasH p21 for GTP 20- to 40-fold without significantly affecting its affinity for GDP. Transfection of NIH 3T3 cells with a mammalian expression vector containing the Asn-17 rasH gene and a Neor gene under the control of the same promoter yielded only a small fraction of the expected number of G418-resistant colonies, indicating that expression of Asn-17 p21 inhibited cell proliferation. The inhibitory effect of Asn-17 p21 required its localization to the plasma membrane and was reversed by coexpression of an activated ras gene, indicating that the mutant p21 blocked the endogenous ras function required for NIH 3T3 cell proliferation. NIH 3T3 cells transformed by v-mos and v-raf, but not v-src, were resistant to inhibition by Asn-17 p21, indicating that the requirement for normal ras function can be bypassed by these cytoplasmic oncogenes. The Asn-17 mutant represents a novel reagent for the study of ras function by virtue of its ability to inhibit cellular ras activity in vivo. Since this phenotype is likely associated with the preferential affinity of the mutant protein for GDP, analogous mutations might also yield inhibitors of other proteins whose activities are regulated by guanine nucleotide binding.  相似文献   

10.
A novel polypeptide, velvet antler polypeptide (VAPPs), having a stimulary effect on proliferation of some cell was isolated from the velvet antler of sika deer (Cervus nippon Temminck). This polypeptide consists of a single chain of 32 amino-acid residues VLSAT DKTNV LAAWG KVGGN APAFG AEALE RM. VAPPs showed marked stimulary effect on rat epidermal cells and NIH3T3 cell line (dose range from 10-40 mg x L(-1) and 5-80 mg x L(-1), respectively).  相似文献   

11.
Lanthanum ion (La(3+)) has been reported to affect proliferation or apoptosis of different cells. In the present study, La(3+) was confirmed to promote both proliferation and apoptosis of NIH 3T3 cells at the same concentrations. La(3+) was shown to promote proliferation by helping the cells to pass through the G1/S restriction point and enter S phase, however, the proliferating cells induced by incubation with La(3+) eventually underwent apoptosis. The proliferation and apoptosis of NIH 3T3 cells induced by La(3+) were well correlated with cell cycle alterations. La(3+) caused the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2; while inhibition of ERK phosphorylation by 2'-amino-3'-methoxyflavone (PD98059) suppressed both proliferation and apoptosis induced by La(3+). Based on the above experimental results, we postulated that La(3+)-promoted proliferation of NIH 3T3 cells could be interconnected with the cell apoptosis, possibly through cell cycle machinery. Our results thus support the recent hypothesis that proliferation and apoptosis of cell are intrinsically coordinated.  相似文献   

12.
Tyrosine phosphorylation of cellular proteins induced by heparin-binding growth factor 1 (HBGF-1) was studied by using the murine fibroblast cell line NIH 3T3 (clone 2.2). HBGF-1 specifically induced the rapid tyrosine phosphorylation of polypeptides of Mr 150,000, 130,000, and 90,000 that were detected with polyclonal and monoclonal antiphosphotyrosine (anti-P-Tyr) antibodies. The concentration of HBGF-1 required for half-maximal induction of tyrosine phosphorylation of the Mr-150,000 Mr-130,000, and Mr-90,000 proteins was approximately 0.2 to 0.5 ng/ml, which was consistent with the half-maximal concentration required for stimulation of DNA synthesis in NIH 3T3 cells. HBGF-1-induced tyrosine phosphorylation of the Mr-150,000 and Mr-130,000 proteins was detected within 30 s, whereas phosphorylation of the Mr-90,000 protein was not detected until 3 min after HBGF-1 stimulation. All three proteins were phosphorylated maximally after 15 to 30 min. Phosphoamino acid analysis of the Mr-150,000 and Mr-90,000 proteins confirmed the phosphorylation of these proteins on tyrosine residues. Phosphorylation of the Mr-150,000 and Mr-90,000 proteins occurred when cells were exposed to HBGF-1 at 37 degrees C but not at 4 degrees C. Exposure of cells to sodium orthovanadate, a potent P-Tyr phosphatase inhibitor, before stimulation with HBGF-1 resulted in enhanced detection of the Mr-150,000, Mr-130,000, and Mr-90,000 proteins by anti-P-Tyr antibodies. Anti-P-Tyr affinity-based chromatography was used to adsorb the HBGF-1 receptor affinity labeled with 125I-HBGF-1. The cross-linked HBGF-1 receptor-ligand complex was eluded with phenyl phosphate as two components: Mr 170,000 and 150,000. P-Tyr, but not phosphoserine or phosphothreonine, inhibited adsorption of the (125)I-HBGF-1-receptor complex to the anti-P-Tyr antibody matrix. Treatment of cells with sodium orthovanadate also enhanced recognition of the cross-linked (125)I-HBGF-1-receptor complex by the anti-P-Tyr matrix. These data suggest that (i) the (125)I-HBGF-1-receptor complex is phosphorylated on tyrosine residues and (ii) HBGF-1-induced signal transduction involves, in part, the tyrosine phosphorylation of at least three polypeptides.  相似文献   

13.
Li MS  Li PF  Yang FY  He SP  Du GG  Li G 《Cell research》2002,12(2):151-156
AIM The existence and properties of alpha-fetoprotein (AFP) receptor on the surface of NIH 3T3 cells and the effects of AFP on cellular signal transduction pathway were investigated. METHODS The effect of AFP on the proliferation of NIH 3T3 cells was measured by incorporation of 3H-TdR. Receptor-binding assay of 125I-AFP was performed to detect the properties of AFP receptor in NIH 3T3 cells. The influences of AFP on the [cAMP]i and the activities of protein kinase A (PKA) were determined. Western blot was used to detect the change of K-ras P21 protein expression. RESULTS The proliferation of NIH 3T3 cells treated with 0-80 mg/L of AFP was significantly enhanced. The Scatchard analysis indicated that there were two classes of binding sites with KD of 2.722×10-9M (Bmax=12810 sites per cell) and 8.931× 10-8M (Bmax=119700 sites per cell) respectively. In the presence of AFP (20 mg/L), the content of cAMP and activities of PKA were significantly elevated . The level of K-ras P21 protein was upregulated by  相似文献   

14.
Thrombopoietin receptor (Mpl) belongs to the cytokine receptor surperfamily with a large extracellular N-terminal portion responsible for cytokine recognition and binding. Thrombopoietin (TPO) has so far been the only widely studied cytokine for Mpl. However we have recently identified human NUDC (hNUDC), previously described as a human homolog of a fungal nuclear migration protein, as another putative binding partner of Mpl. The purpose of this study is to test the extent of the functioning of hNUDC by identifying protein-protein interactions with Mpl in mammalian cells. The full-length cDNAs encoding Mpl and hNUDC were cloned into pEGFP-N1 and pDsRed2-N1 respectively which were subsequently expressed as Mpl-EGFP (green) and hNUDC-DsRed (red) fusion proteins. Using ELISA and immunofluorescence studies, we have demonstrated the direct binding of hNUDC to cell surface-captured Mpl. We also observed that hNUDC induced significant changes in cellular morphology in NIH 3T3 cells stably transfected with pMpl-EGFP. Interestingly, these morphological changes were characteristic of cells undergoing megakaryocyte differentiation. Extracellular-signal-regulated protein kinases 1 and 2 (ERK1/2) have been shown to mediate such megakaryocyte-like differentiation. In addition, co-expression of Mpl-EGFP and hNUDC-DsRed led to the release of hNUDC-DsRed into the culture medium.  相似文献   

15.
Lee YH  Kim SY  Kim JR  Yoh KT  Baek SH  Kim MJ  Ryu SH  Suh PG  Kim JH 《Life sciences》2000,67(7):827-837
Oxidative stress has been implicated in a wide range of cellular damage which includes DNA oxidation, membrane lipid peroxidation, and apoptosis. In our study, we found that overexpression of PLC-beta1 in NIH3T3 fibroblasts protected them from cell death occuring in response to oxidative stress. Cell death caused by treatment with prooxidant tert-butylhydroperoxide (TBH), H2O2, or CdCl2 was considerably suppressed in PLC-beta1 overexpressed NIH/beta1-14 cells in comparison to control NIH/neo cells. However, overexpression of PLC-beta1 failed to protect the cells from toxicity by diamide or KCN. In addition, while accumulation of c-fos mRNA was observed within 30 min of TBH treatment in vector transfected NIH/neo cells, TBH-induced c-fos mRNA generation was completely suppressed in NIH/beta1-14 cells, while that of c-jun and GAPDH was not affected. These findings suggest that PLC-beta1 may play a role in process that can protect cells from oxidative stress-induced cell death.  相似文献   

16.
Liposomes containing phosphatidic acid were capable of stimulating DNA synthesis in quiescent Swiss 3T3 cells while liposomes composed of other phospholipids were not. These results show that liposomes, which are usually employed to deliver non-lipid molecules into cells, can themselves have profound effects on cell growth. The possible mechanism of phosphatidic acid-mediated cell stimulation and its relation to other growth factors are discussed.  相似文献   

17.
18.

Background

Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels.

Methods and results

In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death.

Conclusion

Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.  相似文献   

19.
Summary Depending on the precise conditions and cellular starting material, phorbol-13-myristate-12-acetate (PMA) can induce or suppress the transformation of NIH 3T3 cells. In sublines that do not undergo rapid transformation, exposure to PMA over the course of several weeks accelerated the process, while sublines that are primed for density-mediated transformation respond to PMA with a suppression of the process. This study examines the latter phenomenon. Within 1 h of exposure to 0.02μg/ml PMA, sparse cultures had undergone a morphological transition after which the cells appeared smaller and the processes thinner. These sublines exhibited a two-to sixfold increase in the saturation density achieved in 2% calf serum (CS). Phorbol ester analogs with hydrocarbon substitutions of 4 or more carbons at positions 12 and 13 of the phorbol nucleus had a similar effect as PMA on the saturation density. High concentrations of PMA (1μg/ml) induced the formation of cell aggregates (pseudofoci) that resembled transformed foci in their high local density, but unlike transformed foci, did not reinitiate focus formation if the cells were diluted and replated without PMA as secondary cultures. PMA inhibited the processes of neoplastic transformation and progression that occur readily in these NIH 3T3 sublines when they reach high cell density. I suggest that such changes occur because PMA abolishes the selection pressure at high densities that favors the transformation of some cells in heterogeneous populations. Induction of transformation by PMA (reported previously) occurs after much longer exposures in sublines that are relatively resistant to rapid density-mediated transformation. These results are discussed in the context of progressive state selection, a concept that has been developed to account for spontaneous transformation in this system.  相似文献   

20.
NIH 3T3 fibroblasts were transfected with the chloramphenicol-acetyltransferase (CAT) gene under the control of the SV40 early promoter, which can be stimulated by IL-1. CAT activity in cell lysates and PGE2 release in the supernatants were measured in control and stimulated cell cultures in parallel. Human IL-1 beta (180 pM) and human rTNF-alpha (3 nM) significantly stimulated both CAT activity and PGE2 release. The combined incubation of the two cytokines resulted in a synergistic effect on PGE2 release. The addition of AA (30 microM) greatly stimulated PGE2 release without affecting CAT activity. Similarly, drugs interfering with AA metabolism were without effect on CAT activity although profoundly reducing PGE2 release. Forskolin (0.1 microM) did not modify either parameter. The glucocorticoid fluocinolone (20 nM) was able to decrease both parameters. Protein kinase inhibitors H7 (5-50 microM) and sphingosine (50 microM) inhibited only IL-1-induced CAT activity, whereas H8 (5-50 microM) and HA1004 (50 microM) were ineffective on both parameters. PMA (0.5 microM) and R59 022, a diacylglycerol kinase inhibitor (10 microM), did not modify either control or IL-1-induced CAT activity. IL-1-stimulated PGE2 release was potentiated by PMA, although this effect was not inhibited by H7. The data suggest that: 1) in NIH 3T3 cells the activation of AA metabolism by IL-1 is not involved in IL-1-induced gene expression; 2) protein kinase C activity is required but not sufficient for IL-1-induced gene expression; and 3) PMA may stimulate AA metabolism by a mechanism in part independent of protein kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号