首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to regulate gastric acid secretion and intestinal motility. In the present study, the pattern of distribution of PACAP and PACAP type 1 receptor (PAC1) immunoreactivities were examined in the rat stomach and distal colon using a specific polyclonal antibody raised against rat/human PAC1. Western blot of the membrane preparations of NIH/3T3 cells transfected with the human PAC1 obtained by using rabbit polyclonal anti-PAC1 antibody showed a protein band with a molecular mass of approximately 50 kDa. NIH/3T3 cells transfected with the human PAC1 and incubated with the anti-PAC1 antibody displayed surface cell-type immunoreactivity, which was internalized following ligand exposure. In gastric or colonic longitudinal muscle/myenteric plexus (LMMP) whole mount preparations as well as cryostat sections, PACAP immunoreactivity was observed in cell bodies within the myenteric ganglia and nerve fibers in the muscle layers and mucosa. PAC1 immunoreactivity was confined mainly on the surface of the nerve cells. PACAP and PAC1 immunoreactivities showed a similar pattern of distribution in gastric and colonic tissues. Adjacent sections or LMMP whole mount preparations labeled with protein gene product 9.5 (PGP 9.5) revealed the neuronal identity of myenteric cells bearing PAC1. The neuronal localization of PACAP and PAC1 receptors supports their role in the neural regulation of gastric acid secretion and gastrointestinal motor function.  相似文献   

3.
The present study examined the expression of transient receptor potential vanilloid subtype 1 (TRPV1) in microglia, and its association with microglial cell death. In vitro cell cultures, RT-PCR, Western blot analysis, and immunocytochemical staining experiments revealed that rat microglia and a human microglia cell line (HMO6) showed TRPV1 expression. Furthermore, exposure of these cells to TRPV1 agonists, capsaicin (CAP) and resiniferatoxin (RTX), triggered cell death. This effect was ameliorated by the TRPV1 antagonists, capsazepine and iodo-resiniferatoxin (I-RTX), suggesting that TRPV1 is directly involved. Further examinations revealed that TRPV1-induced toxicity was accompanied by increases in intracellular Ca(2+), and mitochondrial damage; these effects were inhibited by capsazepine, I-RTX, and the intracellular Ca(2+) chelator BAPTA-AM. Treatment of cells with CAP or RTX led to increased mitochondrial cytochrome c release and enhanced immunoreactivity to cleaved caspase-3. In contrast, the caspase-3 inhibitor z-DEVD-fmk protected microglia from CAP- or RTX-induced toxicity. In vivo, we also found that intranigral injection of CAP or 12-hydroperoxyeicosatetraenoic acid, an endogenous agonist of TRPV1, into the rat brain produced microglial damage via TRPV1 in the substantia nigra, as visualized by immunocytochemistry. To our knowledge, this study is the first to demonstrate that microglia express TRPV1, and that activation of this receptor may contribute to microglial damage via Ca(2+) signaling and mitochondrial disruption.  相似文献   

4.
In certain epithelial tissues, activation of transient receptor potential (TRP) vanilloid subtype 1 (TRPV1) by noxious stimuli induces pro-inflammatory cytokine release, which helps to mitigate the challenge. While the corneal epithelium elicits such responses to a variety of challenges, it remains unknown whether TRPV1 mediates pro-inflammatory cytokine secretion. Accordingly, we probed for TRPV1 expression and function in human (HCEC) and rabbit corneal epithelial cell (RCEC) lines, in their primary counterparts, and in human and mouse corneal epithelium in situ. Cell membrane and perinuclear TRPV1 expression was detected in all preparations and its identity verified by Western blot analysis. Capsaicin (CAP) (1-10 microM) increased nonselective cation channel whole cell currents (2.5-fold +/- 0.5-fold between -60 and 130 mV), resulting in calcium transients that were fully blocked by the TRPV1 antagonists capsazepine (CPZ) and ruthenium red, or removal of extracellular calcium. Another signaling event involved transient activation of global mitogen-activated protein kinase (MAPK) superfamily, which was followed by up to 3.3- and 9-fold increases in interleukins (IL)-6 and -8 release, respectively. Such increases in inflammatory mediators' release were suppressed by exposure to CPZ or MAPK inhibitors, or removal of Ca2+. Taken together, TRPV1 receptors may play a role in mediating corneal epithelial inflammatory mediator secretion and subsequent hyperalgesia.  相似文献   

5.
Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from L-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.  相似文献   

6.
The tetradecapeptide somatostatin (SRIF) has an inhibitory action on acid secretion in the stomach. It has been suggested that somatostatin may act directly on parietal cells as well as indirectly via histamine-producing cells. A family of high affinity membrane-bound receptors, which are termed sst1-sst5 receptors, mediates the physiological effects of somatostatin. On the basis of functional studies it has been suggested that somatostatin may mediate its actions in the stomach by activation of a somatostatin sst2 receptor type. Two splice variants of the rat sst2 receptor exist, sst2(a) and sst2(b), which differ in length and composition of their intracellular carboxy termini. To date, little information is available on the distribution of the somatostatin sst2(b) receptor in any peripheral tissue. Here we show for the first time the localisation of this receptor isoform in the rat oxyntic mucosa, where the receptor protein was found to be present in parietal cells. This is in contrast to sst2(a) receptor, which was localised to enterochromaffin-like cells and nerve fibres. The differential localisation of the receptor isoforms to two key cell types, parietal cells and enterochromaffin-like cells, may explain how somatostatin inhibits acid secretion by more than one mechanism.  相似文献   

7.
Dopamine (DA) is regarded as an important modulator of enteric function. Recent experiments have suggested that newly cloned DA receptor subtypes are widely expressed in peripheral organs, including the gastrointestinal tract. In the present studies, the D(1A) receptor subtype was identified in rat gut regions through localization of receptor protein by means of light microscopic immunohistochemistry and Western blot analysis and receptor mRNA by RT-PCR and in situ amplification and hybridization (3SR in situ). D(1A) receptor immunoreactivity was shown to have a diverse distribution in the gastrointestinal tract, being present in the gastroesophageal junction, stomach, pylorus, small intestine, and colon. The receptor has a transmural distribution present in both epithelial and muscle layers as well as in blood vessels and lamina propria cells of different gastrointestinal regions. Western blot analysis demonstrated a single 50-kDa band for esophagus, stomach, duodenum, jejunum, and colon. The in situ hybridization signal was localized to the same sites revealed by D(1A) receptor immunoreactivity. RT-PCR revealed an appropriate sized signal in similar regions. This study is the first to identify expression of the central D(1A) receptor throughout the normal mammalian gastrointestinal tract.  相似文献   

8.
OBJECTIVES: Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), was recently identified in the stomach. Ghrelin is produced in a population of endocrine cells in the gastric mucosa, but expression in intestine, hypothalamus and testis has also been reported. Recent data indicate that ghrelin affects insulin secretion and plays a direct role in metabolic regulation and energy balance. On the basis of these findings, we decided to examine whether ghrelin is expressed in human pancreas. Specimens from fetal to adult human pancreas and stomach were studied by immunocytochemistry, for ghrelin and islet hormones, and in situ hybridisation, for ghrelin mRNA. RESULTS: We identified ghrelin expression in a separate population of islet cells in human fetal, neonatal, and adult pancreas. Pancreatic ghrelin cells were numerous from midgestation to early postnatally (10% of all endocrine cells). The cells were few, but regularly seen in adults as single cells at the islet periphery, in exocrine tissue, in ducts, and in pancreatic ganglia. Ghrelin cells did not express any of the known islet hormones. In fetuses, at midgestation, ghrelin cells in the pancreas clearly outnumbered those in the stomach. CONCLUSIONS: Ghrelin is expressed in a quite prominent endocrine cell population in human fetal pancreas, and ghrelin expression in the pancreas precedes by far that in the stomach. Pancreatic ghrelin cells remain in adult islets at lower numbers. Ghrelin is not co-expressed with any known islet hormone, and the ghrelin cells may therefore constitute a new islet cell type.  相似文献   

9.
10.
Lasp-1 (LIM and SH3 domain protein 1) is a multidomain actin-binding protein that is differentially expressed within epithelial tissues and brain. In the gastric mucosa, Lasp-1 is highly expressed in the HCl-secreting parietal cell, where it is prominently localized within the F-actin-rich subcellular regions. Histamine-induced elevation of parietal cell [cAMP]i increases Lasp-1 phosphorylation, which is correlated with activation of HCl secretion. To determine whether Lasp-1 is involved in the regulation of HCl secretion in vivo, we generated a murine model with a targeted disruption of the Lasp-1 gene. Lasp-1-null mice had slightly lower body weights but developed normally and had no overt phenotypic abnormalities. Basal HCl secretion was unaffected by loss of Lasp-1, but histamine stimulation induced a more robust acid secretory response in Lasp-1-null mice compared with wild-type littermates. A similar effect of histamine was observed in isolated gastric glands on the basis of measurements of accumulation of the weak base [14C]aminopyrine. In addition, inhibition of the acid secretory response to histamine by H2 receptor blockade with ranitidine proceeded more slowly in glands from Lasp-1-null mice. These findings support the conclusion that Lasp-1 is involved in the regulation of parietal HCl secretion. We speculate that cAMP-dependent phosphorylation of Lasp-1 alters interactions with F-actin and/or endocytic proteins that interact with Lasp-1, thereby regulating the trafficking/activation of the H+, K+-ATPase (proton pump).  相似文献   

11.
Immunohistochemistry for two nociceptive transducers, the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2), was performed on the pharynx and its adjacent regions. TRPV1-immunoreactivity (IR) was detected in nerve fibers beneath and within the epithelium and/or taste bud-like structure. In the pharynx, these nerve fibers were abundant in the naso-oral part and at the border region of naso-oral and laryngeal parts. They were also numerous on the laryngeal side of the epiglottis and in the soft palate. TRPV2-IR was expressed by dendritic cells in the pharynx and epiglottis, as well as in the root of the tongue and soft palate. These cells were located in the epithelium and lamina propria. TRPV2-immunoreactive (IR) dendritic cells were numerous in the naso-oral part of the pharynx, epiglottis, and tongue. Abundance of TRPV2-IR dendritic processes usually obscured the presence of TRPV2-IR nerve fibers in these portions. However, some TRPV2-IR nerve fibers could be observed in the epithelium of the soft palate. Retrograde tracing method also revealed that sensory neurons which innervate the pharynx or soft palate were abundant in the jugular–petrosal ganglion complex and relatively rare in the nodose ganglion. In the jugular–petrosal ganglion complex, TRPV1- and TRPV2-IR were expressed by one-third of pharyngeal and soft palate neurons. TRPV2-IR was also detected in 11.5 % pharyngeal and 30.9 % soft palate neurons in the complex. Coexpression of TRPV1 and CGRP was frequent among pharyngeal and soft palate neurons. The present study suggests that TRPV1- and TRPV2-IR jugular–petrosal neurons may be associated with the regulation of the swallowing reflex.  相似文献   

12.
HCl secretion across the parietal cell apical secretory membrane involves the H+-K+-ATPase, the ClC-2 Cl- channel, and a K+ channel. In the present study, the cellular and subcellular distribution of ClC-2 mRNA and protein was determined in the rabbit gastric mucosa and in isolated gastric glands. ClC-2 mRNA was localized to parietal cells by in situ hybridization and by direct in situ RT-PCR. By immunoperoxidase microscopy, ClC-2 protein was concentrated in parietal cells. Immunofluorescent confocal microscopy suggested that the ClC-2 was localized to the secretory canalicular membrane of stimulated parietal cells and to intracellular structures of resting parietal cells. Immunogold electron microscopy confirmed that ClC-2 is in the secretory canalicular membrane of stimulated cells and in tubulovesicles of resting parietal cells. These findings, together with previous functional characterization of the native and recombinant channel, strongly indicate that ClC-2 is the Cl- channel, which together with the H+-K+-ATPase and a K+ channel, results in HCl secretion across the parietal cell secretory membrane.  相似文献   

13.
Transient receptor potential channels (TRPs) regulate tumor growth via calcium-dependent mechanisms. The (thermosensitive) capsaicin receptor TRPV1 is overexpressed in numerous highly aggressive cancers. TRPV1 has potent antiproliferative activity and is therefore potentially applicable in targeted therapy of malignancies. Recently, we characterized TRPM8 functions in pancreatic neuroendocrine tumors (NETs), however, the role of TRPV1 is unknown. Here, we studied the expression and the role of TRPV1 in regulating intracellular Ca2+ and chromogranin A (CgA) secretion in pancreatic NET BON-1 cell line and in primary NET cells (prNET). TRPV1 expression was detected by RT-PCR, Western blot and immunofluorescence. Intracellular free Ca2+ ([Ca2+]i) was measured by fura-2; TRPV1 channel currents by the planar patch-clamp technique. Nonselective cation currents were analyzed by a color-coded plot method and CgA secretion by ELISA. Pancreatic BON-1 cells and NETs express TRPV1. Pharmacological blockade of TRPs by La3+ (100 μM) or by ruthenium-red (RuR) or by capsazepine (CPZ) (both at 10 μM) suppressed the capsaicin (CAP)- or heat-stimulated increase of [Ca2+]i in NET cells. CAP (20 μM) also increased nonselective cation channel currents in BON-1 cells. Furthermore, CAP (10 μM) stimulated CgA secretion, which was inhibited by CPZ or by RuR (both 10 μM). La3+ potently reduced both stimulated and the basal CgA secretion. Our study shows for the first time that TRPV1 is expressed in pancreatic NETs. Activation of TRPV1 translates into changes of intracellular Ca2+, a known mechanism triggering the secretion of CgA. The clinical relevance of TRPV1 activation in NETs requires further investigations.  相似文献   

14.
Previous studies have shown that gastric glands express at least sodium-hydrogen exchanger (NHE) isoforms 1-4. Our aim was to study NHE-3 localization in rat parietal cells and to investigate the functional activity of an apical membrane NHE-3 isoform in parietal cells of rats. Western blot analysis and immunohistochemistry showed expression of NHE-3 in rat stomach colocalizing the protein in parietal cells together with the beta-subunit of the H(+)-K(+)-ATPase. Functional studies in luminally perfused gastric glands demonstrated the presence of an apical NHE isoform sensitive to low concentrations of 5-ethylisopropyl amiloride (EIPA). Intracellular pH measurements in parietal cells conducted in omeprazole-pretreated superfused gastric glands showed an Na+-dependent proton extrusion pathway that was inhibited both by low concentrations of EIPA and by the NHE-3 specific inhibitor S3226. This pathway for proton extrusion had a higher activity in resting glands and was inhibited on stimulation of histamine-induced H(+)-K(+)-ATPase proton extrusion. We conclude that the NHE-3 isoform located on the apical membrane of parietal cells offers an additional pathway for proton secretion under resting conditions. Furthermore, the gastric NHE-3 appears to work under resting conditions and inactivates during periods of H(+)-K(+)-ATPase activity.  相似文献   

15.
: In order to study the role of prostaglandin in the regulation of the gastrointestinal functions, gene expression of prostaglandin receptors along the rat gastrointestinal tracts were investigated.

: Rats were used for the study. The combination of counterflow elutriation separation of mucosal cells and Northern blot analysis was used to detect the gene expression of prostaglandin receptors in gastrointestinal tracts.

: In small intestine and colon, prostaglandin E2 EP1 and EP3 receptor mRNAs were mainly localized in the deeper intestinal wall containing muscle layers. EP4 receptor gene expression, on the other hand, was detected in the intestinal mucosal layer.

In the stomach, EP1 mRNA was detected in gastric muscle layers, whereas EP3 and EN receptor gene expression was mainly present in the gastric mucosal layer containing epithelial cells. In gastric epithelial cells, parietal cells were found to have both EP3 and EP4 receptors. At lower concentrations, prostaglandin E2 inhibited gastric acid secretion by parietal cells probably through EP4 receptors. At higher concentrations, however, it stimulated it. On the other hand, mucous cells possessed only EP4 receptor mRNA.

: Thus, it is suggested that prostaglandin E2 modulates gastrointestinal functions through at least three different prostaglandin receptors (EP1, EP3, and EP4), each of which has a distinct distribution in the gastrointestinal tract.  相似文献   


16.
Experimental data suggest that the endogenous cannabinoid system is involved in gastric function in different animal species. In most of them, CB(1) receptors have been localized on vagal terminals innervating the external wall of the stomach. We aimed at studying the putative presence and distribution of these receptors in the human gastric mucosa. To this end, we first performed Western blotting, RT-PCR, in situ hybridization, and immunohistochemical analysis of CB(1) protein distribution in biopsy samples of healthy individuals. To determine the precise cell populations expressing CB(1) receptors, we performed double immunofluorescence plus confocal microscopy analysis of the same samples. Our results show that CB(1) receptors are present in the gastric epithelium of the mucosa. Specifically, they are expressed by a subpopulation of mucosal cells, the acid-secreting parietal cells, as shown by double immunohistochemical staining and by their differential abundance in subregions of the gastric mucosa. These results reinforce the notion of a prominent role for the endocannabinoid system in the gastric function in humans and postulate the use of cannabinoid CB(1) receptors in parietal cells as new therapeutic targets for the regulation of gastric acid production.  相似文献   

17.
Developmentally regulated brain proteins (drebrins) are highly expressed in brain where they may regulate actin filament formation in dendritic spines. Recently, the drebrin E2 isoform was detected in certain epithelial cell types including the gastric parietal cell. In gastric parietal cells, activation of HCl secretion is correlated with actin filament formation and elongation within intracellular canaliculi, which are the sites of acid secretion. The aim of this study was to define the pattern of drebrin expression in gland units in the intact rabbit oxyntic gastric mucosa and to initiate approaches to define the functions of this protein in parietal cells. Drebrin E2 expression was limited entirely or almost entirely to parietal cells and depended upon the localization of parietal cells along the gland axis. Rabbit drebrin E2 was cloned and found to share 86% identity with human drebrin 1a and to possess a number of cross-species conserved protein-protein interaction and phosphorylation consensus sites. Two-dimensional Western blot and phosphoaffinity column analyses confirmed that drebrin is phosphorylated in parietal cells, and several candidate phosphorylation sites were identified by mass spectrometry. Overexpression of epitope-tagged drebrin E2 led to the formation of microspikes and F-actin-rich ring-like structures in cultured parietal cells and suppressed cAMP-dependent acid secretory responses. In Madin-Darby canine kidney cells, coexpression of epitope-tagged drebrin and the Rho family GTPase Cdc42, which induces filopodial extension, produced an additive increase in the length of microspike projections. Coexpression of dominant negative Cdc42 with drebrin E2 did not prevent drebrin-induced microspike formation. These findings suggest that 1) drebrin can induce the formation of F-actin-rich membrane projections by Cdc42-dependent and -independent mechanisms; and that 2) drebrin plays an active role in directing the secretagogue-dependent formation of F-actin-rich filaments on the parietal cell canalicular membrane. Finally, the differential distribution of drebrin in parietal cells along the gland axis suggests that drebrin E2 may be an important marker of parietal cell differentiation and functionality.  相似文献   

18.
Potassium ions are required for gastric acid secretion. Several potassium channels have been implicated in providing K(+) at the apical membrane of parietal cells. In examining the mRNA expression levels between gastric mucosa and liver tissue, KCNJ15 stood out as the most highly specific K(+) channel in the gastric mucosa. Western blot analysis confirmed that KCNJ15 is abundant in the stomach. Immunofluorescence staining of isolated gastric glands indicated that KCNJ15 was expressed in parietal cells and chief cells, but not in mucous neck cells. In resting parietal cells, KCNJ15 was mainly found in puncta throughout the cytoplasm but was distinct from H(+)-K(+)-ATPase. Upon stimulation, KCNJ15 and H(+)-K(+)-ATPase become colocalized on the apical membranes, as suggested by immunofluorescence staining. Western blot analysis of the resting and the stimulated membrane fractions confirmed this observation. From nonsecreting preparations, KCNJ15-containing vesicles sedimented after a 4-h centrifugation at 100,000 g, but not after a 30-min spin, which did sediment most of the H(+)-K(+)-ATPase-containing tubulovesicles. Most of the KCNJ15 containing small vesicle population was depleted upon stimulation of parietal cells, as indicated by the fact that the KCNJ15 signal was shifted to a large membrane fraction that sedimented at 4,000 g. Our results demonstrate that, in nonsecreting parietal cells, KCNJ15 is stored in vesicles distinct from the H(+)-K(+)-ATPase-enriched tubulovesicles. Furthermore, upon stimulation, KCNJ15 and H(+)-K(+)-ATPase both translocate to the apical membrane for active acid secretion. Thus KCNJ15 can be added to the family of apical K(+) channels in gastric parietal cells.  相似文献   

19.
The pathogenesis of gastroesophageal reflux disease (GERD) remains elusive, but recent evidence suggests that early secretion of inflammatory cytokines and chemokines by the mucosa leads to influx of immune cells followed by tissue damage. We previously showed that exposure of esophageal mucosa to HCl causes ATP release, resulting in activation of acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF AT), the enzyme responsible for the production of platelet-activating factor (PAF). In addition, HCl causes release of IL-8 from the esophageal mucosa. We demonstrate that esophageal epithelial cells secrete proinflammatory mediators in response to HCl and that this response is mediated by ATP. Monolayers of the human esophageal epithelial cell line HET-1A were exposed to acidified cell culture medium (pH 5) for 12 min, a total of seven times over 48 h, to simulate the recurrent acid exposure clinically occurring in GERD. HCl upregulated mRNA and protein expression for the acid-sensing transient receptor potential cation channel, subfamily vanilloid member 1 (TRPV1), lyso-PAF AT, IL-8, eotaxin-1, -2, and -3, macrophage inflammatory protein-1α, and monocyte chemoattractant protein-1. The chemokine profile secreted by HET-1A cells in response to repeated HCl exposure parallels similar findings in erosive esophagitis patients. In HET-1A cells, the TRPV1 agonist capsaicin reproduced these findings for mRNA of the inflammatory mediators lyso-PAF AT, IL-8, and eotaxin-1. These effects were blocked by the TRPV1 antagonists iodoresiniferatoxin and JNJ-17203212. These effects were imitated by direct application of ATP and blocked by the nonselective ATP antagonist suramin. We conclude that HCl/TRPV-induced ATP release upregulated secretion of various chemoattractants by esophageal epithelial cells. These chemoattractants are selective for leukocyte subsets involved in acute inflammatory responses and allergic inflammation. The data support the validity of HET-1A cells as a model of the response of the human esophageal mucosa in GERD.  相似文献   

20.
To examine the role of the vanilloid receptor TRPV1 in neuropathic pain, we assessed the effects of the receptor antagonist thioxo-BCTC and antisense oligonucleotides against the TRPV1 mRNA in a rat model of spinal nerve ligation. In order to identify accessible sites on the mRNA of TRPV1, the RNase H assay was used, leading to the successful identification of binding sites for antisense oligonucleotides. Cotransfection studies using Cos-7 cells were employed to identify the most effective antisense oligonucleotide efficiently inhibiting the expression of a fusion protein consisting of TRPV1 and the green fluorescent protein in a specific and concentration-dependent manner. In an in vivo rat model of spinal nerve ligation, intravenous application of the TRPV1 antagonist thioxo-BCTC reduced mechanical hypersensitivity yielding an ED(50) value of 10.6mg/kg. Intrathecal administration of the antisense oligonucleotide against TRPV1, but not the mismatch oligonucleotide or a vehicle control, reduced mechanical hypersensitivity in rats with spinal nerve ligation in a similar manner. Immunohistochemical analysis revealed neuropathy- and antisense-associated regulation of TRPV1 protein expression in spinal cord and dorsal root ganglia. Our data demonstrate comparative analgesic effects of a TRPV1 anatagonist and a rationally designed TRPV1 antisense oligonucleotide in a spinal nerve ligation model of neuropathic pain and thus, lend support to the validation of TRPV1 as a promising target for the treatment of neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号