首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.  相似文献   

2.
In vivo imaging of islet transplantation   总被引:17,自引:0,他引:17  
Type 1 diabetes mellitus is characterized by the selective destruction of insulin-producing beta cells, which leads to a deficiency in insulin secretion and, as a result, to hyperglycemia. At present, transplantation of pancreatic islets is an emerging and promising clinical modality, which can render individuals with type 1 diabetes insulin independent without increasing the incidence of hypoglycemic events. To monitor transplantation efficiency and graft survival, reliable noninvasive imaging methods are needed. If such methods were introduced into the clinic, essential information could be obtained repeatedly and noninvasively. Here we report on the in vivo detection of transplanted human pancreatic islets using magnetic resonance imaging (MRI) that allowed noninvasive monitoring of islet grafts in diabetic mice in real time. We anticipate that the information obtained in this study would ultimately result in the ability to detect and monitor islet engraftment in humans, which would greatly aid the clinical management of this disease.  相似文献   

3.
The destruction of beta cells in type 1 diabetes (T1D) results in loss of insulin production and glucose homeostasis. Treatment of non-obese diabetic (NOD) mice with immune-depleting/modulating agents (e.g., anti-CD3, murine anti-thymocyte-globulin (mATG)) can lead to diabetes reversal. However, for preclinical studies with these and other agents seeking to reverse disease at onset, the necessity for exogenous insulin administration is debated. Spontaneously diabetic NOD mice were treated with a short-course of mATG and insulin provided as drug therapy or by way of allogeneic islet implants. Herein we demonstrate that exogenous insulin administration is required to achieve disease reversal with mATG in NOD mice. Unexpectedly, we also observed that provision of insulin by way of allogeneic islet implantation in combination with mATG leads to a pronounced reversal of diabetes as well as restoration of tolerance to self-islets. Expansion/induction of regulatory cells was observed in NOD mice stably cured with mATG and allogeneic islets. These data suggest that transient provision of allogeneic insulin-producing islets might provide a temporary window for immune depletion to be more effective and instilling stable tolerance to endogenous beta cells. These findings support the use of a never before explored approach for preserving beta cell function in patients with recent onset T1D.  相似文献   

4.
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia following the destruction of the insulin-producing beta cells of the pancreatic islets of Langerhans by the body's own immune system. Although routine insulin injections can provide diabetic patients with their daily insulin requirements, this treatment is not always effective in maintaining normal glucose levels. A true "cure" is considered possible only through replacement of the beta cell mass, by pancreas transplantation, islet implantation, or implantation of nonendocrine cells modified to secrete insulin. With the recent success of islet implantation to reverse T1D, this procedure has become a welcome therapy for T1D patients. Unfortunately, this procedure is hampered by the limited number of transplantation quality pancreata available for the harvesting of islets. This shortage has sparked great interest in finding a replacement for organ donation, primarily the possible use of stem cell-derived islets starting with stem cells, or alternatively the harvesting of nonhuman islets. This review focuses on progress with growing islets in the laboratory from stem cells and a comparison between this developing technology and the current use of islets harvested from nonhuman sources.  相似文献   

5.
Human diabetes mellitus (IDDM; type I diabetes) is a T cell-mediated disease that is closely modeled in non-obese diabetic (NOD) mice. The pathogenesis of IDDM involves the transmigration of autoimmune T cells into the pancreatic islets and the subsequent destruction of insulin-producing beta cells. Therapeutic interventions leading to beta cell regeneration and the reversal of established IDDM are exceedingly limited. We report here that specific inhibition of T cell intra-islet transmigration by using a small molecule proteinase inhibitor restores beta cell functionality, increases insulin-producing beta cell mass, and alleviates the severity of IDDM in acutely diabetic NOD mice. As a result, acutely diabetic NOD mice do not require insulin injections for survival for a significant time period, thus providing a promising clue to effect IDDM reversal in humans. The extensive morphometric analyses and the measurements of both the C-peptide blood levels and the proinsulin mRNA levels in the islets support our conclusions. Diabetes transfer experiments suggest that the inhibitor specifically represses the T cell transmigration and homing processes as opposed to causing immunosuppression. Overall, our data provide a rationale for the pharmacological control of the T cell transmigration step in human IDDM.  相似文献   

6.
Saldeen J  Sandler S  Bendtzen K  Welsh N 《Cytokine》2000,12(4):405-408
IL-1beta is cytotoxic to pancreatic beta-cells in vitro but its role in the vicinity of beta-cells in vivo is unknown. We explored whether liposome-mediated transfer of the interleukin 1 receptor antagonist (IL-1ra) gene to islet cells might prevent recurrence of disease in syngeneically transplanted non-obese diabetic (NOD) mice. NOD mouse islet cells were transfected using liposome-mediated gene transfer with a human IL-1ra cDNA construct and transplanted two days later to prediabetic NOD mice. Graft infiltration and destruction were monitored three, five and eight days posttransplantation by histology and determination of insulin and cytokine content. IL-1ra gene transfer resulted in transient expression of IL-1ra protein in islet cells in vitro as assessed by ELISA and of IL-1ra mRNA in transplanted islets as revealed by RT-PCR. However, both control and IL-1ra transfected NOD grafts exhibited massive infiltration and loss of insulin-positive cells, paralleled by a decreased insulin content. Increased IL-1ra expression did not clearly affect other cytokine profiles (IL-1beta, IFN-gamma, IL-2), except for an increase of IL-10 on day eight. In conclusion, liposome-mediated IL-1ra gene transfer to mouse islet cells results in transient expression of IL-1ra which is, however, insufficient to confer resistance to destruction of grafted insulin-producing cells in the NOD mouse.  相似文献   

7.
8.
Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells are destroyed in the islets of Langerhans. One of its main pathological manifestations is the hyper-expression of Major Histocompatibility Complex I (MHC-I) by beta cells, which was first described over 3 decades ago yet its cause remains unknown. It might not only be a sign of beta cell dysfunction but could also render the cells susceptible to autoimmune destruction; for example, by islet-infiltrating CD8 T cells. In this report, we studied pancreas tissue from a 22-year-old non-diabetic male cadaveric organ donor who had been at high risk of developing T1D, in which autoantibodies against GAD and IA-2 were detected. Pancreas sections were analyzed for signs of inflammation. Multiple insulin-containing islets were identified, which hyper-expressed MHC-I. However, islet density and MHC-I expression exhibited a highly lobular and heterogeneous pattern even within the same section. In addition, many islets with high expression of MHC-I presented higher levels of CD8 T cell infiltration than normal islets. These results demonstrate the heterogeneity of human pathology that occurs early during the pre-diabetic, autoantibody positive phase, and should contribute to the understanding of human T1D.  相似文献   

9.
Pancreatic beta cells are important in blood glucose level regulation. As type 1 and 2 diabetes are getting prevalent worldwide, we need to explore new methods for early detection of beta cell-related afflictions. Using bioimaging techniques to measure beta cell mass is crucial because a decrease in beta cell density is seen in diseases such as diabetes and thus can be a new way of diagnosis for such diseases. We also need to appraise beta cell purity in transplanted islets for type 1 diabetes patients. Sufficient amount of functional beta cells must also be determined before being transplanted to the patients. In this review, indirect imaging of beta cells will be discussed. This includes membrane protein on pancreatic beta cells whereby specific probes are designed for different imaging modalities mainly magnetic resonance imaging, positron emission tomography and fluorescence imaging. Direct imaging of insulin is also explored though probes synthesized for such function are relatively fewer. The path for successful pancreatic beta cell imaging is fraught with challenges like non-specific binding, lack of beta cell-restricted targets, the requirement of probes to cross multiple lipid layers to bind to intracellular insulin. Hence, there is an urgent need to develop new imaging techniques and innovative probing constructs in the entire imaging chain of bioengineering to provide early detection of beta cell-related pathology.  相似文献   

10.
Type 1 diabetes mellitus is an autoimmune disease characterized by T cell-mediated destruction of the insulin-producing beta cells in the islets of Langerhans. From studies in animal models, CD8(+) T cells recognizing autoantigens such as islet-specific glucose-6-phosphatase catalytic subunit-related protein, insulin, or glutamic acid decarboxylase (GAD) are believed to play important roles in both the early and late phases of beta cell destruction. In this study, we investigated the factors governing the diabetogenic potential of autoreactive CD8(+) clones isolated from spleens of NOD mice that had been immunized with GAD65(515-524) or insulin B-chain(15-23) peptides. Although these two clones were identical in most phenotypic and functional aspects, for example cytokine production and killing of autologous beta cells, they differed in the expression of IFN-gamma-inducible protein-10, which was only produced at high levels by the insulin-specific clone, but not by the GAD65-specific clone, and other autoantigen-specific nonpathogenic CD8 T cell clones. Interestingly, upon i.p. injection into neonatal mice, only the insulin B-chain(15-23)-reactive CD8(+) T clone accelerated diabetes in all recipients after 4 wk, although both insulin- and GAD-reactive clones homed to pancreas and pancreatic lymph nodes with similar kinetics. Diabetes was associated with increased pancreatic T cell infiltration and, in particular, recruitment of macrophages. Thus, secretion of IFN-gamma-inducible protein-10 by autoaggressive CD8(+) lymphocytes might determine their diabetogenic capacity by affecting recruitment of cells to the insulitic lesion.  相似文献   

11.
Noninvasive detection of differentiated cells is increasingly demanded for accurate and reliable assessments of both in vitro and in vivo experimental systems. Here we present an efficient, innovative approach for imaging the beta cells of the pancreatic islets of Langerhans. The main physiologic function of beta cells is glucose-stimulated insulin secretion. This function is facilitated through the synthesis and storage of insulin in secretory vesicles of beta cells, which then release their contents when beta cells are exposed to hyperglycemic conditions. To visualize beta cells in vivo in the mouse, we used targeted mutagenesis techniques to construct a modified insulin II (InsII) gene allele, InsII(EGFP), that expresses a proinsulin-EGFP (enhanced green fluorescent protein) fusion peptide. The EGFP portion of this fusion is entirely within the C-peptide portion of the proinsulin peptide. This fusion protein is processed in beta cells to insulin and EGFP-tagged C peptide, which are stored together in cytoplasmic secretory vesicles. The large amount of vesicular EGFP-tagged C peptide is evident as a characteristic robust and specific fluorescence pattern in the beta cells of InsII(EGFP) mice. This innovative method of visualizing beta cells will be a useful tool in the study of both beta cell physiology and the development of the endocrine cells of the pancreas.  相似文献   

12.
We have produced transgenic mouse strains harboring class II major histocompatibility complex or interferon-gamma genes linked to the human insulin promoter. These experiments were designed to investigate the consequences of the expression of immunological effector molecules by nonimmunological cells. In both of these studies we observed the disappearance from the pancreas of the insulin-producing beta cells coinciding with the development of insulin-dependent diabetes mellitus. Transgenic mice expressing both chains of the I-A gene showed progressive atrophy of the islets of Langerhans, whereas mice expressing interferon-gamma suffered an inflammatory destruction of the islets.  相似文献   

13.
Type I diabetes is an autoimmune disease that results in destructive depletion of the insulin-producing beta cells in the islets of Langerhans in pancreas. With the knowledge that hepatocyte growth factor (HGF) is a potent survival factor for a wide variety of cells, we hypothesized that supplementation of HGF may provide a novel strategy for protecting pancreatic beta cells from destructive death and for preserving insulin production. In this study, we demonstrate that expression of the exogenous HGF gene preserved insulin excretion and mitigated hyperglycemia of diabetic mice induced by streptozotocin. Blood glucose levels were significantly reduced in mice receiving a single intravenous injection of naked HGF gene at various time points after streptozotocin administration. Consistently, HGF concomitantly increased serum insulin levels in diabetic mice. Immunohistochemical staining revealed a marked preservation of insulin-producing beta cells by HGF in the pancreatic islets of the diabetic mice. This beneficial effect of HGF was apparently mediated by both protection of beta cells from death and promotion of their proliferation. Delivery of HGF gene in vivo induced pro-survival Akt kinase activation and Bcl-xL expression in the pancreatic islets of diabetic mice. These findings suggest that supplementation of HGF to prevent beta cells from destructive depletion and to promote their proliferation might be an effective strategy for ameliorating type I diabetes.  相似文献   

14.
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.  相似文献   

15.
To study the dynamics of elastic fiber assembly, mammalian cells were transfected with a cDNA construct encoding bovine tropoelastin in frame with the Timer reporter. Timer is a derivative of the DsRed fluorescent protein that changes from green to red over time and, hence, can be used to distinguish new from old elastin. Using dynamic imaging microscopy, we found that the first step in elastic fiber formation is the appearance of small cell surface-associated elastin globules that increased in size with time (microassembly). The elastin globules are eventually transferred to pre-existing elastic fibers in the extracellular matrix where they coalesce into larger structures (macroassembly). Mechanical forces associated with cell movement help shape the forming, extracellular elastic fiber network. Time-lapse imaging combined with the use of Timer constructs provides unique tools for studying the temporal and spatial aspects of extracellular matrix formation by live cells.  相似文献   

16.
Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction.  相似文献   

17.
18.
Recurrent autoimmune destruction of the insulin-producing beta cells is a key factor limiting successful islet graft transplantation in type I diabetic patients. In this study, we investigated the feasibility of using an Ag-specific plasmid DNA (pDNA)-based strategy to protect pro-islets that had developed from a neonatal pancreas implanted under the kidney capsule of nonobese diabetic (NOD) mice. NOD recipient mice immunized with pDNA encoding a glutamic acid decarboxylase 65 (GAD65)-IgFc fusion protein (JwGAD65), IL-4 (JwIL4), and IL-10 (pIL10) exhibited an increased number of intact pro-islets expressing high levels of insulin 15 wk posttransplant, relative to NOD recipient mice immunized with pDNA encoding a hen egg lysozyme (HEL)-IgFc fusion protein (JwHEL)+JwIL4 and pIL10 or left untreated. Notably, the majority of grafted pro-islets detected in JwGAD65+JwIL4- plus pIL10-treated recipients was free of insulitis. In addition, administration of JwGAD65+JwIL4+pIL10 provided optimal protection for engrafted islets compared with recipient NOD mice treated with JwGAD65+JwIL4 or JwGAD65+pIL10, despite effective protection of endogenous islets mediated by the respective pDNA treatments. Efficient protection of pro-islet grafts correlated with a marked reduction in GAD65-specific IFN-gamma reactivity and an increase in IL-10-secreting T cells. These results demonstrate that pDNA vaccination can be an effective strategy to mediate long-term protection of pro-islet grafts in an Ag-specific manner and that conditions are more stringent to suppress autoimmune destruction of grafted vs endogenous islets.  相似文献   

19.
BACKGROUND: The Src-homology 2 domain-containing adaptor protein Shb was recently cloned as a serum-inducible gene in the insulin-producing beta-TC1 cell line. Subsequent studies have revealed an involvement of Shb for apoptosis in NIH3T3 fibroblasts and differentiation in the neuronal PC12 cells. To assess a role of Shb for beta-cell function, transgenic mice utilizing the rat insulin promoter to drive expression of Shb were generated. MATERIALS AND METHODS: A gene construct allowing the Shb cDNA to be expressed from the rat insulin 2 promoter was microinjected into fertilized mouse oocytes and implanted into pseudopregnant mice. Mice containing a low copy number of this transgene were bred and used for further experimentation. Shb expression was determined by Western blot analysis. The insulin-positive area of whole pancreas, insulin secretion of isolated islets and islet cell apoptosis, glucose tolerance tests, and in vivo sensitivity to multiple injections of the beta-cell toxin streptozotocin were determined in control CBA and Shb-transgenic mice. RESULTS: Western blot analysis revealed elevated islet content of the Shb protein. Shb-transgenic mice displayed enhanced glucose-disappearance rates in response to an intravenous glucose injection. The relative pancreatic beta-cell area neonatally and at 6 months of age were increased in the Shb-transgenic mice. Islets isolated from Shb-transgenic mice showed enhanced insulin secretion in response to glucose and increased insulin and DNA content. Apoptosis was increased in islets isolated from Shb-transgenic mice compared with control islets both under basal conditions and after incubation with IL-1 beta + IFN-gamma. Rat insulinoma RINm5F cells overexpressing Shb displayed decreased viability during culture in 0.1% serum and after exposure to a cytotoxic dose of nicotinamide. Shb-transgenic mice injected with multiple doses of streptozotocin showed increased blood glucose values compared with the corresponding controls, suggesting increased in vivo susceptibility to this toxin. CONCLUSION: The results suggest that Shb has dual effects on beta-cell growth: whereas Shb increases beta-cell formation during late embryonal stages, Shb also enhances beta-cell death under certain stressful conditions and may thus contribute to beta-cell destruction in type 1 diabetes.  相似文献   

20.
Background aimsDifferentiation or reprogramming of stem cells could be achieved by remodulating the microenvironment, which regulates the fate of cells by soluble factors and contacts. By providing an in vivo-like microenvironment, directional and functional differentiation of stem cells could be achieved in vitro. In this study, the differentiation of mesenchymal stromal cells (MSCs) derived from rat tissues (adipose, rAT; bone marrow, rBM) were analyzed by in vitro and in vivo co-culture experiments. The insulin-producing capacities of islets transplanted under the renal kidney capsule with rAT- and rBM-MSCs were compared and the reduction of hyperglycemia symptoms in rat models was examined.MethodsMSCs prelabeled with green fluorescence protein were co-cultured with islets directly. The insulin production of cells was determined by immunostaining and ELISA. Streptozotocin-induced diabetic rat models were created and MSCs were co-transplanted with the islets under the kidney capsule to confirm the in vitro results.ResultsMSCs were differentiated into insulin-producing cells after 38 days of co-culture, confirmed by insulin and C-peptide stainings. In vivo functional studies revealed that the co-culture of islets with MSCs provided higher differentiation efficiency. The weight gain measurement and glucose tolerance test in the rat group co-transplanted of rAT-MSCs and islets indicate a better recovery than islet-alone transplants and co-transplants of islets and rBM-MSCs.ConclusionsrAT-MSCs could be considered as the cell of choice for cell-based treatment of type 1 diabetes. Because the co-transplantation of islets with MSCs increases the number of insulin-producing cells, this method was suggested for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号