首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network.  相似文献   

2.
ABSTRACT: BACKGROUND: Employing methods to assess the quality of modeled protein structures is now standard practice in bioinformatics. In a broad sense, the techniques can be divided into methods relying on consensus prediction on the one hand, and single-model methods on the other. Consensus methods frequently perform very well when there is a clear consensus, but this is not always the case. In particular, they frequently fail in selecting the best possible model in the hard cases (lacking consensus) or in the easy cases where models are very similar. In contrast, single-model methods do not suffer from these drawbacks and could potentially be applied on any protein of interest to assess quality or as a scoring function for sampling-based refinement. RESULTS: Here, we present a new single-model method, ProQ2, based on ideas from its predecessor, ProQ. ProQ2 is a model quality assessment algorithm that uses support vector machines to predict local as well as global quality of protein models. Improved performance is obtained by combining previously used features with updated structural and predicted features. The most important contribution can be attributed the use of profile weighting of the residue specific features and the use features averaged over the whole model even tough the prediction is still local. CONCLUSIONS: ProQ2 is significantly better than its predecessors at detecting high quality models, improving the sum of Z-scores for the selected first-ranked models by 20% and 32% compared to the second-best single-model method in CASP8 and CASP9, respectively. The absolute quality assessment of the models at both local and global level is also improved. The Pearson's correlation between the correct and local predicted score is improved from 0.59 to 0.70 on CASP8 and from 0.62 to 0.68 on CASP9; for global score to the correct GDT_TS from 0.75 to 0.80 and from 0.77 to 0.80 again compared to the second-best single methods in CASP8.  相似文献   

3.
This article reviews recent work towards modelling protein folding pathways using a bioinformatics approach. Statistical models have been developed for sequence-structure correlations in proteins at five levels of structural complexity: (i) short motifs; (ii) extended motifs; (iii) nonlocal pairs of motifs; (iv) 3-dimensional arrangements of multiple motifs; and (v) global structural homology. We review statistical models, including sequence profiles, hidden Markov models (HMMs) and interaction potentials, for the first four levels of structural detail. The I-sites (folding Initiation sites) Library models short local structure motifs. Each succeeding level has a statistical model, as follows: HMMSTR (HMM for STRucture) is an HMM for extended motifs; HMMSTR-CM (Contact Maps) is a model for pairwise interactions between motifs; and SCALI-HMM (HMMs for Structural Core ALIgnments) is a set of HMMs for the spatial arrangements of motifs. The parallels between the statistical models and theoretical models for folding pathways are discussed in this article; however, global sequence models are not discussed because they have been extensively reviewed elsewhere. The data used and algorithms presented in this article are available at http://www.bioinfo.rpi.edu/~bystrc/ (click on "servers" or "downloads") or by request to bystrc@rpi.edu .  相似文献   

4.
In the absence of experimentally determined protein structure many biological questions can be addressed using computational structural models. However, the utility of protein structural models depends on their quality. Therefore, the estimation of the quality of predicted structures is an important problem. One of the approaches to this problem is the use of knowledge‐based statistical potentials. Such methods typically rely on the statistics of distances and angles of residue‐residue or atom‐atom interactions collected from experimentally determined structures. Here, we present VoroMQA (Voronoi tessellation‐based Model Quality Assessment), a new method for the estimation of protein structure quality. Our method combines the idea of statistical potentials with the use of interatomic contact areas instead of distances. Contact areas, derived using Voronoi tessellation of protein structure, are used to describe and seamlessly integrate both explicit interactions between protein atoms and implicit interactions of protein atoms with solvent. VoroMQA produces scores at atomic, residue, and global levels, all in the fixed range from 0 to 1. The method was tested on the CASP data and compared to several other single‐model quality assessment methods. VoroMQA showed strong performance in the recognition of the native structure and in the structural model selection tests, thus demonstrating the efficacy of interatomic contact areas in estimating protein structure quality. The software implementation of VoroMQA is freely available as a standalone application and as a web server at http://bioinformatics.lt/software/voromqa . Proteins 2017; 85:1131–1145. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
SUMMARY: We built a web server named APOLLO, which can evaluate the absolute global and local qualities of a single protein model using machine learning methods or the global and local qualities of a pool of models using a pair-wise comparison approach. Based on our evaluations on 107 CASP9 (Critical Assessment of Techniques for Protein Structure Prediction) targets, the predicted quality scores generated from our machine learning and pair-wise methods have an average per-target correlation of 0.671 and 0.917, respectively, with the true model quality scores. Based on our test on 92 CASP9 targets, our predicted absolute local qualities have an average difference of 2.60 ? with the actual distances to native structure. AVAILABILITY: http://sysbio.rnet.missouri.edu/apollo/. Single and pair-wise global quality assessment software is also available at the site.  相似文献   

6.
Modelling biological processes using workflow and Petri Net models   总被引:4,自引:0,他引:4  
MOTIVATION: Biological processes can be considered at many levels of detail, ranging from atomic mechanism to general processes such as cell division, cell adhesion or cell invasion. The experimental study of protein function and gene regulation typically provides information at many levels. The representation of hierarchical process knowledge in biology is therefore a major challenge for bioinformatics. To represent high-level processes in the context of their component functions, we have developed a graphical knowledge model for biological processes that supports methods for qualitative reasoning. RESULTS: We assessed eleven diverse models that were developed in the fields of software engineering, business, and biology, to evaluate their suitability for representing and simulating biological processes. Based on this assessment, we combined the best aspects of two models: Workflow/Petri Net and a biological concept model. The Workflow model can represent nesting and ordering of processes, the structural components that participate in the processes, and the roles that they play. It also maps to Petri Nets, which allow verification of formal properties and qualitative simulation. The biological concept model, TAMBIS, provides a framework for describing biological entities that can be mapped to the workflow model. We tested our model by representing malaria parasites invading host erythrocytes, and composed queries, in five general classes, to discover relationships among processes and structural components. We used reachability analysis to answer queries about the dynamic aspects of the model. AVAILABILITY: The model is available at http://smi.stanford.edu/projects/helix/pubs/process-model/.  相似文献   

7.
Protein structural annotation and classification is an important and challenging problem in bioinformatics. Research towards analysis of sequence-structure correspondences is critical for better understanding of a protein's structure, function, and its interaction with other molecules. Clustering of protein domains based on their structural similarities provides valuable information for protein classification schemes. In this article, we attempt to determine whether structure information alone is sufficient to adequately classify protein structures. We present an algorithm that identifies regions of structural similarity within a given set of protein structures, and uses those regions for clustering. In our approach, called STRALCP (STRucture ALignment-based Clustering of Proteins), we generate detailed information about global and local similarities between pairs of protein structures, identify fragments (spans) that are structurally conserved among proteins, and use these spans to group the structures accordingly. We also provide a web server at http://as2ts.llnl.gov/AS2TS/STRALCP/ for selecting protein structures, calculating structurally conserved regions and performing automated clustering.  相似文献   

8.
9.
Despite a growing repertoire of membrane protein structures (currently ∼120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.  相似文献   

10.
Structural genomics projects are providing large quantities of new 3D structural data for proteins. To monitor the quality of these data, we have developed the protein structure validation software suite (PSVS), for assessment of protein structures generated by NMR or X-ray crystallographic methods. PSVS is broadly applicable for structure quality assessment in structural biology projects. The software integrates under a single interface analyses from several widely-used structure quality evaluation tools, including PROCHECK (Laskowski et al., J Appl Crystallog 1993;26:283-291), MolProbity (Lovell et al., Proteins 2003;50:437-450), Verify3D (Luthy et al., Nature 1992;356:83-85), ProsaII (Sippl, Proteins 1993;17: 355-362), the PDB validation software, and various structure-validation tools developed in our own laboratory. PSVS provides standard constraint analyses, statistics on goodness-of-fit between structures and experimental data, and knowledge-based structure quality scores in standardized format suitable for database integration. The analysis provides both global and site-specific measures of protein structure quality. Global quality measures are reported as Z scores, based on calibration with a set of high-resolution X-ray crystal structures. PSVS is particularly useful in assessing protein structures determined by NMR methods, but is also valuable for assessing X-ray crystal structures or homology models. Using these tools, we assessed protein structures generated by the Northeast Structural Genomics Consortium and other international structural genomics projects, over a 5-year period. Protein structures produced from structural genomics projects exhibit quality score distributions similar to those of structures produced in traditional structural biology projects during the same time period. However, while some NMR structures have structure quality scores similar to those seen in higher-resolution X-ray crystal structures, the majority of NMR structures have lower scores. Potential reasons for this "structure quality score gap" between NMR and X-ray crystal structures are discussed.  相似文献   

11.
Template-based modeling that employs various meta-threading techniques is currently the most accurate, and consequently the most commonly used, approach for protein structure prediction. Despite the evident progress in this field, accurate structure models cannot be constructed for a significant fraction of gene products, thus the development of new algorithms is required. Here, we describe the development, optimization and large-scale benchmarking of eThread, a highly accurate meta-threading procedure for the identification of structural templates and the construction of corresponding target-to-template alignments. eThread integrates ten state-of-the-art threading/fold recognition algorithms in a local environment and extensively uses various machine learning techniques to carry out fully automated template-based protein structure modeling. Tertiary structure prediction employs two protocols based on widely used modeling algorithms: Modeller and TASSER-Lite. As a part of eThread, we also developed eContact, which is a Bayesian classifier for the prediction of inter-residue contacts and eRank, which effectively ranks generated multiple protein models and provides reliable confidence estimates as structure quality assessment. Excluding closely related templates from the modeling process, eThread generates models, which are correct at the fold level, for >80% of the targets; 40–50% of the constructed models are of a very high quality, which would be considered accurate at the family level. Furthermore, in large-scale benchmarking, we compare the performance of eThread to several alternative methods commonly used in protein structure prediction. Finally, we estimate the upper bound for this type of approach and discuss the directions towards further improvements.  相似文献   

12.
《Genomics》2020,112(6):4561-4566
BackgroundBioinformatics tools are of great significance and are used in different spheres of life sciences. There are wide variety of tools available to perform primary analysis of DNA and protein but most of them are available on different platforms and many remain undetected. Accessing these tools separately to perform individual task is uneconomical and inefficient.ObjectiveOur aim is to bring different bioinformatics models on a single platform to ameliorate scientific research. Hence, our objective is to make a tool for comprehensive DNA and protein analysis.MethodsTo develop a reliable, straight-forward and standalone desktop application we used state of the art python packages and libraries. Bioinformatics Mini Toolbox (BMT) is combination of seven tools including FastqTrimmer, Gene Prediction, DNA Analysis, Translation, Protein analysis and Pairwise and Multiple alignment.ResultsFastqTrimmer assists in quality assurance of NGS data. Gene prediction predicts the genes by homology from novel genome on the basis of reference sequence. Protein analysis and DNA analysis calculates physiochemical properties of nucleotide and protein sequences, respectively. Translation translates the DNA sequence into six open reading frames. Pairwise alignment performs pairwise global and local alignment of DNA and protein sequences on the basis or multiple matrices. Multiple alignment aligns multiple sequences and generates a phylogenetic tree.ConclusionWe developed a tool for comprehensive DNA and protein analysis. The link to download BMT is https://github.com/nasiriqbal012/BMT_SETUP.git  相似文献   

13.
AMarge     
AMarge is a web tool for the automatic quality assessment of Affymetrix GeneChip data. It is essential to have a trustworthy set of chips in order to derive gene expression data for phenotypic analysis, and AMarge provides a complete and rigorous web-accessible tool to fulfill this need. The quality assessment steps include image plots of weights derived from a robust linear model fit of the data, a 3'/5' RNA digestion plot, and Affymetrix Microarray Suite version 5.0 (MAS 5.0) quality standard procedures. Furthermore, robust multi-array average expression values are generated in order to have a start-up expression set for the subsequent analysis. The results of the complete analysis are summarised and returned as an HTML report. AVAILABILITY: The AMarge web interface is accessible at http://nin.crg.es/cgi-binf/AMargeWeb.cgi. A mirror server is also available at http://bioinformatics.istge.it/AMarge-bin/AMargeWeb.cgi. The software implementing all these methods is part of the Bioconductor project (http://www.bioconductor.org).  相似文献   

14.

Background

Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor.

Results

Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction.

Conclusions

Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.  相似文献   

15.
16.
Computational prediction of protein structures is a difficult task, which involves fast and accurate evaluation of candidate model structures. We propose to enhance single‐model quality assessment with a functionality evaluation phase for proteins whose quantitative functional characteristics are known. In particular, this idea can be applied to evaluation of structural models of ion channels, whose main function ‐ conducting ions ‐ can be quantitatively measured with the patch‐clamp technique providing the current–voltage characteristics. The study was performed on a set of KcsA channel models obtained from complete and incomplete contact maps. A fast continuous electrodiffusion model was used for calculating the current–voltage characteristics of structural models. We found that the computed charge selectivity and total current were sensitive to structural and electrostatic quality of models. In practical terms, we show that evaluating predicted conductance values is an appropriate method to eliminate models with an occluded pore or with multiple erroneously created pores. Moreover, filtering models on the basis of their predicted charge selectivity results in a substantial enrichment of the candidate set in highly accurate models. Tests on three other ion channels indicate that, in addition to being a proof of the concept, our function‐oriented single‐model quality assessment method can be directly applied to evaluation of structural models of some classes of protein channels. Finally, our work raises an important question whether a computational validation of functionality should be included in the evaluation process of structural models, whenever possible. Proteins 2016; 84:217–231. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Thompson JD  Koehl P  Ripp R  Poch O 《Proteins》2005,61(1):127-136
Multiple sequence alignment is one of the cornerstones of modern molecular biology. It is used to identify conserved motifs, to determine protein domains, in 2D/3D structure prediction by homology and in evolutionary studies. Recently, high-throughput technologies such as genome sequencing and structural proteomics have lead to an explosion in the amount of sequence and structure information available. In response, several new multiple alignment methods have been developed that improve both the efficiency and the quality of protein alignments. Consequently, the benchmarks used to evaluate and compare these methods must also evolve. We present here the latest release of the most widely used multiple alignment benchmark, BAliBASE, which provides high quality, manually refined, reference alignments based on 3D structural superpositions. Version 3.0 of BAliBASE includes new, more challenging test cases, representing the real problems encountered when aligning large sets of complex sequences. Using a novel, semiautomatic update protocol, the number of protein families in the benchmark has been increased and representative test cases are now available that cover most of the protein fold space. The total number of proteins in BAliBASE has also been significantly increased from 1444 to 6255 sequences. In addition, full-length sequences are now provided for all test cases, which represent difficult cases for both global and local alignment programs. Finally, the BAliBASE Web site (http://www-bio3d-igbmc.u-strasbg.fr/balibase) has been completely redesigned to provide a more user-friendly, interactive interface for the visualization of the BAliBASE reference alignments and the associated annotations.  相似文献   

18.
In this study, we address the problem of local quality assessment in homology models. As a prerequisite for the evaluation of methods for predicting local model quality, we first examine the problem of measuring local structural similarities between a model and the corresponding native structure. Several local geometric similarity measures are evaluated. Two methods based on structural superposition are found to best reproduce local model quality assessments by human experts. We then examine the performance of state-of-the-art statistical potentials in predicting local model quality on three qualitatively distinct data sets. The best statistical potential, DFIRE, is shown to perform on par with the best current structure-based method in the literature, ProQres. A combination of different statistical potentials and structural features using support vector machines is shown to provide somewhat improved performance over published methods.  相似文献   

19.
limmaGUI: a graphical user interface for linear modeling of microarray data   总被引:15,自引:0,他引:15  
SUMMARY: limmaGUI is a graphical user interface (GUI) based on R-Tcl/Tk for the exploration and linear modeling of data from two-color spotted microarray experiments, especially the assessment of differential expression in complex experiments. limmaGUI provides an interface to the statistical methods of the limma package for R, and is itself implemented as an R package. The software provides point and click access to a range of methods for background correction, graphical display, normalization, and analysis of microarray data. Arbitrarily complex microarray experiments involving multiple RNA sources can be accomodated using linear models and contrasts. Empirical Bayes shrinkage of the gene-wise residual variances is provided to ensure stable results even when the number of arrays is small. Integrated support is provided for quantitative spot quality weights, control spots, within-array replicate spots and multiple testing. limmaGUI is available for most platforms on the which R runs including Windows, Mac and most flavors of Unix. AVAILABILITY: http://bioinf.wehi.edu.au/limmaGUI.  相似文献   

20.
L Richard  L Genberg  J Deak  H L Chiu  R J Miller 《Biochemistry》1992,31(44):10703-10715
Phase grating spectroscopy has been used to follow the optically triggered tertiary structural changes of carboxymyoglobin (MbCO) and carboxyhemoglobin (HbCO). Probe wavelength and temperature dependencies have shown that the grating signal arises from nonthermal density changes induced by the protein structural changes. The material displaced through the protein structural changes leads to the excitation of coherent acoustic modes of the surrounding water. The coupling of the structural changes to the fluid hydrodynamics demonstrates that a global change in the protein structure is occurring in less than 30 ps. The global relaxation is on the same time scale as the local changes in structure in the vicinity of the heme pocket. The observed dynamics for global relaxation and correspondence between the local and global structural changes provides evidence for the involvement of collective modes in the propagation of the initial tertiary conformational changes. The energetics can also be derived from the acoustic signal. For MbCO, the photodissociation process is endothermic by 21 +/- 2 kcal/mol, which corresponds closely to the expected Fe-CO bond enthalpy. In contrast, HbCO dissipates approximately 10 kcal/mol more energy relative to myoglobin during its initial tertiary structural relaxation. The difference in energetics indicates that significantly more energy is stored in the hemoglobin structure and is believed to be related to the quaternary structure of hemoglobin not present in the monomeric form of myoglobin. These findings provide new insight into the biomechanics of conformational changes in proteins and lend support to theoretical models invoking stored strain energy as the driving force for large amplitude correlated motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号