首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The application of ACO-based algorithms in data mining has been growing over the last few years, and several supervised and unsupervised learning algorithms have been developed using this bio-inspired approach. Most recent works about unsupervised learning have focused on clustering, showing the potential of ACO-based techniques. However, there are still clustering areas that are almost unexplored using these techniques, such as medoid-based clustering. Medoid-based clustering methods are helpful—compared to classical centroid-based techniques—when centroids cannot be easily defined. This paper proposes two medoid-based ACO clustering algorithms, where the only information needed is the distance between data: one algorithm that uses an ACO procedure to determine an optimal medoid set (METACOC algorithm) and another algorithm that uses an automatic selection of the number of clusters (METACOC-K algorithm). The proposed algorithms are compared against classical clustering approaches using synthetic and real-world datasets.  相似文献   

3.
There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuristic information, how to select the best solutions for updating the pheromone information, and how to define and use weights to aggregate the different objectives. This formulation reveals more similarities than previously thought in the design choices made in existing MOACO algorithms. The main contribution of this paper is an experimental analysis of how particular design choices affect the quality and the shape of the Pareto front approximations generated by each MOACO algorithm. This study provides general guidelines to understand how MOACO algorithms work, and how to improve their design.  相似文献   

4.
Bayesian networks are knowledge representation tools that model the (in)dependency relationships among variables for probabilistic reasoning. Classification with Bayesian networks aims to compute the class with the highest probability given a case. This special kind is referred to as Bayesian network classifiers. Since learning the Bayesian network structure from a dataset can be viewed as an optimization problem, heuristic search algorithms may be applied to build high-quality networks in medium- or large-scale problems, as exhaustive search is often feasible only for small problems. In this paper, we present our new algorithm, ABC-Miner, and propose several extensions to it. ABC-Miner uses ant colony optimization for learning the structure of Bayesian network classifiers. We report extended computational results comparing the performance of our algorithm with eight other classification algorithms, namely six variations of well-known Bayesian network classifiers, cAnt-Miner for discovering classification rules and a support vector machine algorithm.  相似文献   

5.
Classification is a data mining task the goal of which is to learn a model, from a training dataset, that can predict the class of a new data instance, while clustering aims to discover natural instance-groupings within a given dataset. Learning cluster-based classification systems involves partitioning a training set into data subsets (clusters) and building a local classification model for each data cluster. The class of a new instance is predicted by first assigning the instance to its nearest cluster and then using that cluster’s local classification model to predict the instance’s class. In this paper, we present an ant colony optimization (ACO) approach to building cluster-based classification systems. Our ACO approach optimizes the number of clusters, the positioning of the clusters, and the choice of classification algorithm to use as the local classifier for each cluster. We also present an ensemble approach that allows the system to decide on the class of a given instance by considering the predictions of all local classifiers, employing a weighted voting mechanism based on the fuzzy degree of membership in each cluster. Our experimental evaluation employs five widely used classification algorithms: naïve Bayes, nearest neighbour, Ripper, C4.5, and support vector machines, and results are reported on a suite of 54 popular UCI benchmark datasets.  相似文献   

6.
We developed a new approach for the reconstruction of phylogenetic trees using ant colony optimization metaheuristics. A tree is constructed using a fully connected graph and the problem is approached similarly to the well-known traveling salesman problem. This methodology was used to develop an algorithm for constructing a phylogenetic tree using a pheromone matrix. Two data sets were tested with the algorithm: complete mitochondrial genomes from mammals and DNA sequences of the p53 gene from several eutherians. This new methodology was found to be superior to other well-known softwares, at least for this data set. These results are very promising and suggest more efforts for further developments.  相似文献   

7.
8.
Epistasis has been receiving increasing attention in understanding the mechanism underlying susceptibility to complex diseases. Though many works have been done for epistasis detection, genome-wide association study remains a challenging task: it makes the search space excessively huge while solution quality is excessively demanded. In this study, we introduce an ant colony optimization based algorithm, AntMiner, by incorporating heuristic information into ant-decision rules. The heuristic information is used to direct ants in the search process for improving computational efficiency and solution accuracy. During iterations, chi-squared test is conducted to measure the association between an interaction and the phenotype. At the completion of the iteration process, statistically significant epistatic interactions are ordered and then screened by a post-procedure. Experiments of AntMiner and its comparison with existing algorithms epiMODE, TEAM and AntEpiSeeker are performed on both simulation data sets and real age-related macular degeneration data set, under the criteria of detection power and sensitivity. Results demonstrate that AntMiner is promising for epistasis detection. In terms of detection power, AntMiner performs best among all the other algorithms on all cases regardless of epistasis models and single nucleotide polymorphism size; compared with AntEpiSeeker, AntMiner can obtain better detection power but with less ants and iterations. In terms of sensitivity, AntMiner is better than AntEpiSeeker in detecting epistasis models displaying marginal effects but it has moderate sensitivity on epistasis models displaying no marginal effects. The study may provide clues on heuristics for further epistasis detection. The software package is available online at https://sourceforge.net/projects/antminer/files/.  相似文献   

9.
10.
Ant colony optimisation (ACO) is a nature-inspired, population-based metaheuristic that has been used to solve a wide variety of computationally hard problems. In order to take full advantage of the inherently stochastic and distributed nature of the method, we describe a parallelization strategy that leverages these features on heterogeneous and large-scale, massively-parallel hardware systems. Our approach balances workload effectively, by dynamically assigning jobs to heterogeneous resources which then run ACO implementations using different search strategies. Our experimental results confirm that we can obtain significant improvements in terms of both solution quality and energy expenditure, thus opening up new possibilities for the development of metaheuristic-based solutions to “real world” problems on high-performance, energy-efficient contemporary heterogeneous computing platforms.  相似文献   

11.
《Process Biochemistry》2010,45(6):961-972
Inverse estimation of model parameters via mathematical modeling route, known as inverse modeling (IM), is an attractive alternative approach to the experimental methods. This approach makes use of efficient optimization techniques in the course of solution of an inverse problem with the aid of measured data. In this study, a novel optimization method based on ant colony optimization (ACO), denoted by ACO-IM, is presented for inverse estimation of kinetic and film thickness parameters of biofilm models that describe an experimental fixed bed anaerobic reactor. The proposed optimization method for parameter estimation emulates the fact that ants are capable of finding the shortest path from a food source to their nest by depositing a trial of pheromone during their walk. The efficacy of the ACO-IM for numerical estimation of bio-kinetic parameters is demonstrated through its application for the anaerobic treatment of industry wastewater in a fixed bed biofilm process. The results explain the rigorousness of mathematical models, the form of kinetic and film thickness models and the type of packing to be used with the biofilm process for accurate determination of kinetic and film thickness parameters so as to ensure reliable predictive performance of the biofilm reactor models.  相似文献   

12.
Finding good designs in the early stages of the software development lifecycle is a demanding multi-objective problem that is crucial to success. Previously, both interactive and non-interactive techniques based on evolutionary algorithms (EAs) have been successfully applied to assist the designer. However, recently ant colony optimization was shown to outperform EAs at optimising quantitative measures of software designs with a limited computational budget. In this paper, we propose a novel interactive ACO (iACO) approach, in which the search is steered jointly by an adaptive model that combines subjective and objective measures. Results show that iACO is speedy, responsive and effective in enabling interactive, dynamic multi-objective search. Indeed, study participants rate the iACO search experience as compelling. Moreover, inspection of the learned model facilitates understanding of factors affecting users’ judgements, such as the interplay between a design’s elegance and the interdependencies between its components.  相似文献   

13.
Most interactions between individuals of social insects occur in colonies. The correct identification of colonies is therefore crucial for most empirical studies which aim to test evolutionary theories based on properties at the colony level. In many ant populations, the identification of colonics is hampered by polydomy, i.e. that single colonics occupy several, spatially separated nests. Only few attempts have been made so far to develop genetical methods for analysing the structure of specific colonics. Three methods to solve this problem are presented: rare genotype sisterhoods (tracking rare genotypes or alleles), G -distance (a measure of genotypic heterogeneity derived from G -statistics), and neighbour relatcdness (estimates of genetic relatcdness for specific nest pairs). Our methods quantify the likelihood of nest pairs being con-colonial or non-colonial, and given sufficient genetical resolution, statistical tests can be applied. The methods proposed here arc applied to a highly polygynous population of the red ant, Myrmica sulcinodis. In this population single colonics are found to inhabit 1–4 nests, and both monodomous and polydomous colonies coexist in dense clusters of nests. This result is discussed with respect to the functional significance of polydomy. Further, the general application of the methods for determination of colony structure is discussed.  相似文献   

14.
15.
The use of ant colony optimization for solving stochastic optimization problems has received a significant amount of attention in recent years. In this paper, we present a study of enhanced ant colony optimization algorithms for tackling a stochastic optimization problem, the probabilistic traveling salesman problem. In particular, we propose an empirical estimation approach to evaluate the cost of the solutions constructed by the ants. Moreover, we use a recent estimation-based iterative improvement algorithm as a local search. Experimental results on a large number of problem instances show that the proposed ant colony optimization algorithms outperform the current best algorithm tailored to solve the given problem, which also happened to be an ant colony optimization algorithm. As a consequence, we have obtained a new state-of-the-art ant colony optimization algorithm for the probabilistic traveling salesman problem.  相似文献   

16.

Background  

Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME) principle (aiming at recovering the phylogeny with shortest length) is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the -hard class of problems.  相似文献   

17.
The evolution of queens that rear their first brood solely using body reserves, i.e. fully claustral, is viewed as a major advance for higher ants because it eliminated the need for queens to leave the nest to forage. In an apparently unusual secondary modification, the seed-harvester ant Pogonomyrmex californicus displays obligate queen foraging, i.e. queens must forage to garner the resources necessary to survive and successfully rear their first brood. I examined the potential benefits of queen foraging by comparing ecological and physiological traits between P. californicus and several congeners in which the queen can rear brood using only body reserves. The primary advantage of foraging appears to lie in providing the queens of P. californicus with the energy to raise significantly more brood than possible by congeners that use only body reserves; the workers reared in the first brood were also heavier in mass than that predicted by their head width. Other correlates of queen foraging in P. californicus relative to tested congeners included a significantly lower total fat content for alate queens, a small queen body size, and a low queen to worker body mass ratio. Queens also forage in several other well-studied species of Pogonomyrmex, suggesting the possibility that queen foraging may be more common than previously thought in higher ants.  相似文献   

18.
In this paper we present Ant Colony System for Traffic Assignment (ACS-TA) for the solution of deterministic and stochastic user equilibria (DUE and SUE, respectively) problems. DUE and SUE are two well known transportation problems where the transportation demand has to be assigned to an underlying network (supply in transportation terminology) according to single user satisfaction rather than aiming at some global optimum. ACS-TA turns the classic ACS meta-heuristic for discrete optimization into a technique for equilibrium computation. ACS-TA can be easily adapted to take into account all aspects characterizing the traffic assignment problem: multiple origin-destination pairs, link congestion, non-separable cost link functions, elasticity of demand, multiple classes of demand and different user cost models including stochastic cost perception. Applications to different networks, including a non-separable costs case study and the standard Sioux Falls benchmark, are reported. Results show good performance and wider applicability with respect to conventional approaches especially for stochastic user equilibrium computation.  相似文献   

19.
Haplotype information plays an important role in many genetic analyses. However, the identification of haplotypes based on sequencing methods is both expensive and time consuming. Current sequencing methods are only efficient to determine conflated data of haplotypes, that is, genotypes. This raises the need to develop computational methods to infer haplotypes from genotypes.Haplotype inference by pure parsimony is an NP-hard problem and still remains a challenging task in bioinformatics. In this paper, we propose an efficient ant colony optimization (ACO) heuristic method, named ACOHAP, to solve the problem. The main idea is based on the construction of a binary tree structure through which ants can travel and resolve conflated data of all haplotypes from site to site. Experiments with both small and large data sets show that ACOHAP outperforms other state-of-the-art heuristic methods. ACOHAP is as good as the currently best exact method, RPoly, on small data sets. However, it is much better than RPoly on large data sets. These results demonstrate the efficiency of the ACOHAP algorithm to solve the haplotype inference by pure parsimony problem for both small and large data sets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号