首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently developed a sensitive method using biotin-N-maleimide (biotin-NM) as a probe to positively identify oxidized mitochondrial proteins. In this study, biotin-NM was used to identify oxidized cytosolic proteins in alcohol-fed mouse livers. Alcohol treatment for 6 wk elevated the levels of CYP2E1 and nitrotyrosine, a marker of oxidative stress. Markedly increased levels of oxidized proteins were detected in alcohol-fed mouse livers compared to pair-fed controls. The biotin-NM-labeled oxidized proteins from alcohol-exposed mouse livers were subsequently purified with streptavidin-agarose and resolved on 2-DE. More than 90 silver-stained protein spots that displayed differential intensities on 2-D gels were identified by MS. Peptide sequence analysis revealed that many enzymes or proteins involved in stress response, chaperone activity, intermediary metabolism, and antioxidant defense systems such as peroxiredoxin were oxidized after alcohol treatment. Smaller fragments of many proteins were repeatedly detected only in alcohol-fed mice, indicating that many oxidized proteins after alcohol exposure were degraded. Immunoblot results showed that the level of oxidized peroxiredoxin (inactivated) was markedly increased in the alcohol-exposed mouse livers and ethanol-sensitive hepatoma cells compared to the corresponding controls. Our results may explain the underlying mechanism for cellular dysfunction and increased susceptibility to other toxic agents following alcohol-mediated oxidative stress.  相似文献   

2.
Alcohol treatment induces oxidative stress by a combination of increased production of partially reduced oxygen species and decreased cellular antioxidant pool, including GSH. Recently, we showed that mitochondrion-targeted CYP2E1 augments alcohol-mediated toxicity, causing an increase in reactive oxygen species production and oxidative stress. Here, we show that cytochrome c oxidase (CcO), the terminal oxidase of the mitochondrial respiratory chain, is a critical target of CYP2E1-mediated alcohol toxicity. COS-7 and Hep G2 cell lines expressing predominantly mitochondrion-targeted (Mt(++)) CYP2E1 and livers from alcohol-treated rats showed loss of CcO activity and increased protein carbonylation, which was accompanied by a decline in the steady state levels of subunits I, IVI1, and Vb of the CcO complex. This was also accompanied by reduced mitochondrial DNA content and reduced mitochondrial mRNA. These changes were more prominent in Mt(++) cells in comparison with wild type (WT) CYP2E1-expressing or ER(+) (mostly microsome-targeted) cells. In addition, mitochondrion-specific antioxidants, ubiquinol conjugated to triphenyl phosphonium, triphenylphosphonium conjugated carboxyl proxyl, and the CYP2E1 inhibitor diallyl sulfide prevented the loss of CcO activity and the CcO subunits, most likely through reduced oxidative damage to the enzyme complex. Our results suggest that damage to CcO and dissociation of respirosome complexes are critical factors in alcohol-induced toxicity, which is augmented by mitochondrion-targeted CYP2E1. We propose that CcO is one of the direct and immediate targets of alcohol-induced toxicity causing respiratory dysfunction.  相似文献   

3.
Although S-Adenosylmethionine (SAMe) has beneficial effects in many hepatic disorders, the effects of SAMe on acute alcohol-induced liver injury are unknown. In the present study, we investigated effects of SAMe on liver injury in mice induced by acute alcohol administration. Male C57BL/6 mice received ethanol (5 g/kg BW) by gavage every 12 hrs for a total of 3 doses. SAMe (5 mg/kg BW) was administrated i.p. once a day for three days before ethanol administration. Subsequent serum ALT level, hepatic lipid peroxidation, enzymatic activity of CYP2E1 and hepatic mitochondrial glutathione levels were measured colorimetrically. Intracellular SAMe concentration was measured by high-performance liquid chromatography (HPLC). Histopathological changes were assessed by H&E staining. Our results showed that acute ethanol administration caused prominent microvesicular steatosis with mild necrosis and an elevation of serum ALT activity. SAMe treatment significantly attenuated the liver injury. In association with the hepatocyte injury, acute alcohol administration induced significant decreases in both hepatic SAMe and mitochondrial GSH levels along with enhanced lipid peroxidation. SAMe treatment attenuated hepatic SAMe and mitochondrial GSH depletion and lipid peroxidation following acute alcohol exposure. These results demonstrate that SAMe protects against the liver injury and attenuates the mitochondrial GSH depletion caused by acute alcohol administration. SAMe may prove to be an effective therapeutic agent in many toxin-induced liver injuries including those induced by alcohol.  相似文献   

4.
Serum deprivation-induced HepG2 cell death is potentiated by CYP2E1   总被引:5,自引:0,他引:5  
Induction of oxidative stress plays a key role in serum deprivation-induced apoptosis. CYP2E1 plays an important role in toxicity of many chemicals and ethanol and produces oxidant stress. We investigated whether CYP2E1 expression can sensitize HepG2 cells to toxicity as a consequence of serum deprivation. The models used were HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells which do not express CYP2E1. E47 cells showed greater growth inhibition and enhanced cell death after serum deprivation, as compared to the C34 cells. DNA ladder and flow cytometry assays indicated that apoptosis occurred at earlier times after serum deprivation in E47 than C34 cells. Serum withdrawal-induced E47 cell death could be rescued by antioxidants, the mitochondrial permeability transition inhibitor cyclosporine A, z-DEVD-fmk, and a CYP2E1 inhibitor 4-methylpyrazole. Increased production of reactive oxygen species (ROS) and lipid peroxidation occurred in E47 cells after serum deprivation, and there was a corresponding decline in the E47 cell mitochondrial membrane potential and reduced glutathione (GSH) levels. We propose that the mechanism of this serum withdrawal plus CYP2E1 toxicity involves increased production of intracellular ROS, lipid peroxidation, and decline of GSH levels, which results in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of serum deprivation-induced cell death by CYP2E1 may contribute to the sensitivity of the liver to alcohol-induced ischemia and growth factor deprivation.  相似文献   

5.
6.
Induction of CYP2E1 by ethanol is one mechanism by which ethanol causes oxidative stress and alcohol liver disease. Although CYP2E1 is predominantly found in the endoplasmic reticulum, it is also located in rat hepatic mitochondria. In the current study, chronic alcohol consumption induced rat hepatic mitochondrial CYP2E1. To study the role of mitochondrial targeted CYP2E1 in generating oxidative stress and causing damage to mitochondria, HepG2 lines overexpressing CYP2E1 in mitochondria (mE10 and mE27 cells) were established by transfecting a plasmid containing human CYP2E1 cDNA lacking the hydrophobic endoplasmic reticulum targeting signal sequence into HepG2 cells followed by G418 selection. A 40-kDa catalytically active NH2-terminally truncated form of CYP2E1 (mtCYP2E1) was detected in the mitochondrial compartment in these cells by Western blot analysis. Cell death caused by depletion of GSH by buthionine sulfoximine (BSO) was increased in mE10 and mE27 cells as compared with cells transfected with empty vector (pCI-neo). Antioxidants were able to abolish the loss of cell viability. Increased levels of reactive oxygen species and mitochondrial 3-nitrotyrosine and 4-hydroxynonenal protein adducts and decreased mitochondrial aconitase activity and mitochondrial membrane potential were observed in mE10 and mE27 cells treated with BSO. The mitochondrial membrane stabilizer, cyclosporine A, was also able to protect these cells from BSO toxicity. These results revealed that CYP2E1 in the mitochondrial compartment could induce oxidative stress in the mitochondria, damage mitochondria membrane potential, and cause a loss of cell viability. The accumulation of CYP2E1 in hepatic mitochondria induced by ethanol consumption might play an important role in alcohol liver disease.  相似文献   

7.
The acetylation of the ε-amino group of lysine to form N-acetyl lysine (N-AcLys)-modified proteins regulates the activity of metabolic proteins. Because of the multiple effects of ethanol upon hepatic metabolism, it was hypothesized that ethanol exposure increases the hepatic content of N-AcLys-modified proteins. To test this hypothesis, rats or mice were exposed to ethanol using a liquid diet regimen. Content of N-AcLys-modified proteins was elevated more than 5-fold after 6 weeks of ethanol exposure and persisted after ethanol withdrawal. Use of CYP2E1-knockout mice demonstrated that ethanol-induced acetylation was not dependent solely on CYP2E1 expression. The mitochondrial content of N-AcLys-modified proteins was elevated almost 5-fold following 6 weeks of ethanol exposure. Mitochondrial content of the deacetylase Sirt3 was unchanged by 6 weeks of ethanol exposure. These data indicate ethanol intoxication changes the acetylation status of, and likely the activity of, multiple mitochondrial proteins.  相似文献   

8.
BackgroundAlcohol consumption is considered to be a major health problem among people living with HIV/AIDS. Our previous reports have shown that ethanol reduced intracellular concentrations of antiretroviral drugs elvitegravir and darunavir in the HIV-1-infected U1 cell line. Ethanol also increased HIV-1 replication despite the presence of elvitegravir. Our previous finding has also shown that the levels of cytochrome P450 enzyme 2E1 (CYP2E1) and oxidative stress in blood monocytes were induced, while the concentration of alcohol in the plasma was reduced in HIV-1-infected alcohol users compared to uninfected alcohol users. However, the role of CYP2E1 in ethanol-enhanced oxidative stress and HIV-1 replication is still unclear.MethodsThis study examined the chronic effects (14 days) of ethanol on HIV viral load, oxidative DNA damage, expression of CYP2E1, expression of antioxidant enzymes (AOEs), expression of reactive oxygen species (ROS) in human monocyte-derived macrophages (MDM). Further, to evaluate the role of CYP2E1 in mediating ethanol-induced viral replication, CYP2E1 siRNA and CYP2E1 selective inhibitor were used in the HIV-1-infected U1 cell line following ethanol treatment.ResultsChronic ethanol exposure demonstrated an increase in oxidative DNA damage and CYP2E1 expression in both non-infected and HIV-1-infected MDM. Our results showed that ethanol chronic exposure increased HIV-1 replication by ~3-fold in HIV-1-infected MDM. This ethanol-enhanced HIV-1 replication was associated with an increased oxidative DNA damage, an increased expression of CYP2E1, and a decreased expression of antioxidant enzyme PRDX6. In HIV-1-infected U1 cell line, we observed a decreased viral replication (~30%) and a decreased DNA damage (~100%) after repression of CYP2E1 by siRNA, upon ethanol exposure. We also observed a decreased viral replication (~25%) after inhibition of CYP2E1 by using selective CYP2E1 inhibitor.ConclusionsThe data suggest that chronic ethanol exposure increases HIV-1 replication in MDM, at least in part, through CYP2E1-mediated oxidative stress. These results are clinically relevant to potentially find effective treatment strategies for HIV-1-infected alcohol users.  相似文献   

9.
Oxidative damage of the endothelium disrupts the integrity of the blood-brain barrier (BBB). We have shown before that alcohol exposure increases the levels of reactive oxygen species (ROS; superoxide and hydroxyl radical) and nitric oxide (NO) in brain endothelial cells by activating NADPH oxidase and inducible nitric oxide synthase. We hypothesize that impairment of antioxidant systems, such as a reduction in catalase and superoxide dismutase (SOD) activity, by ethanol exposure may elevate the levels of ROS/NO in endothelium, resulting in BBB damage. This study examines whether stabilization of antioxidant enzyme activity results in suppression of ROS levels by anti-inflammatory agents. To address this idea, we determined the effects of ethanol on the kinetic profile of SOD and catalase activity and ROS/NO generation in primary human brain endothelial cells (hBECs). We observed an enhanced production of ROS and NO levels due to the metabolism of ethanol in hBECs. Similar increases were found after exposure of hBECs to acetaldehyde, the major metabolite of ethanol. Ethanol simultaneously augmented ROS generation and the activity of antioxidative enzymes. SOD activity was increased for a much longer period of time than catalase activity. A decline in SOD activity and protein levels preceded elevation of oxidant levels. SOD stabilization by the antioxidant and mitochondria-protecting agent acetyl-L-carnitine (ALC) and the anti-inflammatory agent rosiglitazone suppressed ROS levels, with a marginal increase in NO levels. Mitochondrial membrane protein damage and decreased membrane potential after ethanol exposure indicated mitochondrial injury. These changes were prevented by ALC. Our findings suggest the counteracting mechanisms of oxidants and antioxidants during alcohol-induced oxidative stress at the BBB. The presence of enzymatic stabilizers favors the ROS-neutralizing antioxidant redox of the BBB, suggesting an underlying protective mechanism of NO for brain vascular tone and vasodilation.  相似文献   

10.
11.
12.
Hepatic mitochondria contain an inducible cytochrome P450, referred to as P450 MT5, which cross-reacts with antibodies to microsomal cytochrome P450 2E1. In the present study, we purified, partially sequenced, and determined enzymatic properties of the rat liver mitochondrial form. The mitochondrial cytochrome P450 2E1 was purified from pyrazole-induced rat livers using a combination of hydrophobic and ion-exchange chromatography. Mass spectrometry analysis of tryptic fragments of the purified protein further ascertained its identity. N-terminal sequencing of the purified protein showed that its N terminus is identical to that of the microsomal cytochrome P450 2E1. In reconstitution experiments, the mitochondrial cytochrome P450 2E1 displayed the same catalytic activity as the microsomal counterpart, although the activity of the mitochondrial enzyme was supported exclusively by adrenodoxin and adrenodoxin reductase. Mass spectrometry analysis of tryptic fragments and also immunoblot analysis of proteins with anti-serine phosphate antibody demonstrated that the mitochondrial cytochrome P450 2E1 is phosphorylated at a higher level compared with the microsomal counterpart. A different conformational state of the mitochondrial targeted cytochrome P450 2E1 (P450 MT5) is likely to be responsible for its observed preference for adrenodoxin and adrenodoxin reductase electron transfer proteins.  相似文献   

13.
Binge alcohol drinking induces hepatic steatosis. Recent studies showed that chronic ethanol-induced fatty liver was, at least in part, CYP2E1 dependent. The mechanism of acute alcohol-induced steatosis and whether CYP2E1 plays any role are still unclear. Increasing oxidative stress by alcohol can activate the JNK MAP kinase signaling pathway, suggesting that JNK might be a target for prevention of alcohol-induced steatosis. We used CYP2E1 knockout (KO) mice, a JNK inhibitor, and JNK1 or JNK2 knockout mice to test the role of CYP2E1, JNK, and the individual role of JNK1 and JNK2 in acute alcohol-induced steatosis. In wild-type (WT) mice, acute alcohol activates CYP2E1 and increases oxidative stress, which reciprocally increases activation of the JNK signaling pathway. Acute alcohol-induced fatty liver and oxidative stress were blunted in CYP2E1 KO mice and by the JNK inhibitor in WT mice. The antioxidant N-acetylcysteine decreased the acute alcohol-induced oxidative stress, the activation of JNK, and the steatosis but not the activation of CYP2E1. Acute alcohol decreased autophagy and increased expression of SREBP, effects blocked by the JNK inhibitor. Acute alcohol-induced fatty liver was the same in JNK1 and JNK2 KO mice as in WT mice; thus either JNK1 or JNK2 per se is sufficient for induction of steatosis by acute alcohol. The results show that acute alcohol elevation of CYP2E1, oxidative stress, and activation of JNK interact to lower autophagy and increase lipogenic SREBP resulting in fatty liver.  相似文献   

14.
HepG2 cells were transfected with recombinant plasmids, one carrying the murine alcohol dehydrogenase (ADH) gene and the other containing the gene encoding human cytochrome P450 2E1 (CYP2E1). One of recombinant clones called VL-17A exhibited ADH and CYP2E1 specific activities comparable to those in isolated rat hepatocytes. VL-17A cells oxidized ethanol and generated acetaldehyde, the levels of which depended upon the initial ethanol concentration. Compared with unexposed VL-17A cells, ethanol exposure increased the cellular redox (lactate:pyruvate ratio) and caused cell toxicity, indicated by increased leakage of lactate dehydrogenase into the medium,. Exposure of VL-17A cells to 100mM ethanol significantly elevated caspase 3 activity, an indicator of apoptosis, but this ethanol concentration did not affect caspase 3 activity in parental HepG2 cells. Because ethanol consumption causes a decline in hepatic protein catabolism, we examined the influence of ethanol exposure on proteasome activity in HepG2, VL-17A, E-47 (CYP2E1(+)) and VA-13 (ADH(+)) cells. Exposure to 100mM ethanol caused a 25% decline in the chymotrypsin-like activity of the proteasome in VL-17A cells, but the enzyme was unaffected in the other cell types. This inhibitory effect on the proteasome was blocked when ethanol metabolism was blocked by 4-methyl pyrazole. We conclude that recombinant VL-17A cells, which express both ADH and CYP2E1 exhibit hepatocyte-like characteristics in response to ethanol. Furthermore, the metabolism of ethanol by these cells via ADH and CYP2E1 is sufficient to bring about an inhibition of proteasome activity that may lead to apoptotic cell death.  相似文献   

15.
It has been shown in previous studies that liver HEP-G2 cells (human hepatocellular carcinoma) lose their ability to express active alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Although both are ethanol-inducible enzymes, short-term exposure to ethanol does not cause any changes in expression or activity in cultured HEP-G2 cells. Therefore, we tested the effect of long-term exposure to ethanol on the expression and activity of both ADH and CYP2E1 in these cells. The expression of ADH and CYP2E1 was assessed at the mRNA and/or protein level using real-time PCR and Western blot analysis. Specific colorimetric assays were used for the measurement of ADH and CYP2E1 enzymatic activities. Caco-2 cells (active CYP2E1 and inactive ADH) were used as control cells. Significantly increased protein expression of ADH (about 2.5-fold) as well as CYP2E1 (about 1.6-fold) was found in HEP-G2 cells after long-term (12 mo) exposure to ethanol. The activity of ADH and CYP2E1 was also significantly increased from 12?±?3 and 6?±?1 nmol/h/mg of total protein to 191?±?9 and 57?±?9 nmol/h/mg of total protein, respectively. We suggest that the loss of activity of ethanol-metabolizing enzymes in cultured HEP-G2 cells is reversible and can be induced by prolonged exposure to ethanol. We are therefore able to reactivate HEP-G2 cells metabolic functions concerning ethanol oxidation just by modification of in vitro culture conditions without necessity of transfection with its side effect – enzyme overexpression.  相似文献   

16.
Antioxidants are likely potential pharmaceutical agents for the treatment of alcoholic liver disease. Metallothionein (MT) is a cysteine-rich protein and functions as an antioxidant. This study was designed to determine whether MT confers resistance to acute alcohol-induced hepatotoxicity and to explore the mechanistic link between oxidative stress and alcoholic liver injury. MT-overexpressing transgenic and wild-type mice were administrated three gastric doses of alcohol at 5 g/kg. Liver injury, oxidative stress, and ethanol metabolism-associated changes were determined. Acute ethanol administration in the wild-type mice caused prominent microvesicular steatosis, along with necrosis and elevation of serum alanine aminotransferase. Ultrastructural changes of the hepatocytes include glycogen and fat accumulation, organelle abnormality, and focal cytoplasmic degeneration. This acute alcohol hepatotoxicity was significantly inhibited in the MT-transgenic mice. Furthermore, ethanol treatment decreased hepatic-reduced glutathione, but increased oxidized glutathione along with lipid peroxidation, protein oxidation, and superoxide generation in the wild-type mice. This hepatic oxidative stress was significantly suppressed in the MT-transgenic mice. However, MT did not affect the ethanol metabolism-associated decrease in NAD(+)/NADH ratio or increase in cytochrome P450 2E1. In conclusion, MT is an effective agent in cytoprotection against alcohol-induced liver injury, and hepatic protection by MT is likely through inhibition of alcohol-induced oxidative stress.  相似文献   

17.
Lithium preparations are commonly used drug in treating mental disorders and bipolar diseases, but metal's cytotoxic mechanisms have not yet been completely understood. In this study, we investigated the cytotoxic mechanisms of lithium in freshly isolated rat hepatocytes. Lithium cytotoxicity were associated with reactive oxygen species (ROS) formation and collapse of mitochondrial membrane potential and cytochrome c release into the hepatocyte cytosol. All of the mentioned lithium-induced cytotoxicity markers were significantly (P?相似文献   

18.
In this study, the effects of ethanol and allyl alcohol on primary mouse hepatocytes were investigated. No cytotoxicity was observed by ethanol treatments, but more toxicity to cells was found in the response to allyl alcohol treatment. The expression of cytochrome P450 2E1 (CYP2E1), phase I enzyme was examined in response to ethanol and allyl alcohol. Both xenobiotics induced CYP2E1 up to 1.5 to approximately 5 fold at the protein level. The effects of insulin on CYP2E1 expression were also measured. Insulin, which has been regarded as an essential hormone for primary hepatocytes, was shown to decrease the level of CYP2E1 protein, and did not affect cell viability. These results on CYP2E1 induction demonstrate that primary mouse hepatocytes, when using ethanol and allyl alcohol as substrates and in insulin-free medium, provide a suitable system for the studies of the role of CYP2E1 in xenobiotic metabolism and toxicity.  相似文献   

19.
Cytochrome P450 (CYP) 2E1 is induced by ethanol and is postulated to be a source of reactive oxygen species during alcoholic liver disease. However, there was no difference in liver pathology and radical formation between wild-type and CYP2E1 knockout mice fed ethanol. Other CYP isoforms may contribute these effects if CYP2E1 is inhibited or absent. The purpose of this study was, therefore, to determine if blocking most of the P450 isoforms with 1-aminobenzotriazole (ABT; 100 mg/kg i.g.), has any effect on liver damage and oxidative stress due to alcohol in rats and mice. Male C57BL/6 mice and Wistar rats were fed either high-fat control or ethanol-containing enteral diet for 4 weeks. ABT had a significant inhibitory effect on many P450 isoforms independent of concomitant alcohol administration. However, ABT did not protect against liver damage due to alcohol in either species. Indices of oxidative stress and inflammation were also similar in livers from vehicle-treated and ABT-treated animals fed ethanol. In summary, suppression of P450 activity with ABT had no apparent effect on oxidative stress caused by alcohol in both rats and mice. These data support the hypothesis that oxidative stress and liver damage can occur independently of CYP activities in both rats and mice during early alcohol-induced liver injury.  相似文献   

20.
In this study, the effects of ethanol and allyl alcohol on primary mouse hepatocytes were investigated. No cytotoxicity was observed by ethanol treatments, but more toxicity to cells was found in the response to allyl alcohol treatment. The expression of cytochrome P450 2E1 (CYP2E1), phase I enzyme was examined in response to ethanol and allyl alcohol. Both xenobiotics induced CYP2E1 up to 1.5~5 fold at the protein level. The effects of insulin on CYP2E1 expression were also measured. Insulin, which has been regarded as an essential hormone for primary hepatocytes, was shown to decrease the level of CYP2E1 protein, and did not affect cell viability. These results on CYP2E1 induction demonstrate that primary mouse hepatocytes, when using ethanol and allyl alcohol as substrates and in insulin-free medium, provide a suitable system for the studies of the role of CYP2E1 in xenobiotic metabolism and toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号