首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Acyl-CoA:1-O-hexadecyl-2-acetyl-sn-glycerol acyl-transferase, a newly detected enzyme related to platelet-activating factor metabolism, has been characterized in microsomes of a human leukemia cell line (HL-60 cells). It has a sharp pH optimum of 6.8, does not require divalent metal ions, is stable at preincubation temperatures up to 45 degrees C, and among a variety of acyl-CoA thioesters (8:0-20:4) tested, linoleoyl-CoA is the best substrate. Km and Vmax values for 1-O-hexadecyl-2-acetyl-sn-glycerol acyltransferase are 8.5 microM and 1.7 nmol/min/mg of protein, respectively. For comparative purposes acyl-CoA:1,2-dioleoyl-sn-glycerol acyltransferase was also characterized in HL-60 microsomes. It has a relatively broad pH optimum of 6.1, is stimulated 1.4-fold by Mg2+, is relatively labile at preincubation temperatures higher than 25 degrees C, and among the various acyl-CoA thioesters tested, myristoyl-CoA is the best substrate. In substrate competition experiments, we found 1-O-hexadecyl-2-oleoyl-sn-glycerol is a competitive inhibitor (Ki = 32 microM). Our findings indicate acyl-CoA:1-O-hexadecyl-2-acetyl-sn-glycerol acyltransferase in HL-60 cells is distinctly different from acyl-CoA:1,2-dioleoyl-sn-glycerol acyltransferase. Our experimental results demonstrate that the unique enzyme activity characterized in this report also is expressed in intact HL-60 cells.  相似文献   

2.
Maximal protein kinase C activity with vesicles of phosphatidic acid and 1,2-dioleoyl-sn-glycerol is observed in the absence of added Ca2+. Addition of phosphatidylcholine to these vesicles restores some calcium dependence of enzyme activity. 1,2-Dioleoyl-sn-glycerol eliminates the Ca(2+)-dependence of protein kinase C activity found with phosphatidic acid alone. Phorbol esters do not mimic the action of 1,2-dioleoyl-sn-glycerol in this respect. This suggests that the 1,2-dioleoyl-sn-glycerol effect is a result of changes it causes in the physical properties of the membrane rather than to specific binding to the enzyme. The effect of 1,2-dioleoyl-sn-glycerol on the phosphatidic-acid-stimulated protein kinase C activity is dependent on the molar fraction of 1,2-dioleoyl-sn-glycerol used and results in a gradual shift from Ca2+ stimulation at low 1,2-dioleoyl-sn-glycerol concentrations to calcium inhibition at higher concentrations of 1,2-dioleoyl-sn-glycerol. Phosphatidylserine-stimulated activity is also shown to be largely independent of the calcium concentration at higher molar fractions of 1,2-dioleoyl-sn-glycerol. Thus, with certain lipid compositions, protein kinase C activity becomes independent of the calcium concentration or requires only very low, stoichiometric binding of Ca2+ to high affinity sites on the enzyme. Protein kinase C can bind to phosphatidic acid vesicles more readily than it can bind to phosphatidylserine vesicles in the absence of calcium. Addition of 1,2-dioleoyl-sn-glycerol to phosphatidylserine vesicles promotes the partitioning of protein kinase C into the membrane in the absence of added Ca2+. There is no isozyme specificity in this binding. These results suggest that a less-tightly packed headgroup region of the bilayer causes increased insertion of protein kinase C into the membrane. This is a necessary but not sufficient condition for activation of the enzyme in the presence of EGTA.  相似文献   

3.
Vasopressin stimulates phosphatidylcholine hydrolysis in REF52 cells, and this phosphatidylcholine hydrolysis results in increases in choline containing metabolites in the culture medium (2.3 x control levels) and accumulation of cellular diacylglycerol (6.5 x control levels). Vasopressin is the only component of a 6-component mixture of the serum-free medium for REF52 cells that induces the phosphatidylcholine hydrolysis response. The effect of vasopressin is both time- and concentration-dependent. Maximal levels of both phosphatidyl-choline hydrolysis and accumulation of diacylglycerol are observed between 10 and 20 min after treatment with vasopressin. Effects are maximal at vasopressin concentrations of 100 ng/ml; the ED50 for vasopressin-stimulated phosphatidyl-choline hydrolysis is approximately 0.7 ng/ml. The evolution of diacylglycerol occurs in a time frame that is consistent with the diacylglycerol activating protein kinase C in a "second phase" agonist response.  相似文献   

4.
Studies on BC3H-1 myocytes suggest that the insulin-induced increase in cellular diacylglycerol level mediates the insulin-stimulated glucose transport in these cells (Standaert, M. L., Farese, R. V., Cooper, D. R., and Pollet, R. J. (1988) J. Biol. Chem. 263, 8696-8705). The present study tested whether diacylglycerol could mediate the insulin-induced and exercise-induced increases in glucose uptake by rat skeletal muscle in vivo. Glucose uptake by calf muscles of the rat was assessed by measuring cellular 2-deoxyglucose uptake in vivo. Diacylglycerol and ceramides in muscles frozen in situ were assayed with diacylglycerol kinase. Intravenous injection of 0.1 unit of insulin/rat resulted in a 6-fold increase in muscle 2-deoxyglucose uptake during the subsequent 25-min period. In contrast, no statistically significant changes in muscle diacylglycerol or ceramide levels were observed at 2, 5, 10, and 25 min after insulin injection. When calf muscles of the hindlimb were exercised in vivo for 25 min by electrical stimulation inducing one contraction/s, 2-deoxyglucose uptake by muscles was increased 15-fold. However, no statistically significant changes in muscle diacylglycerol or ceramide content were observed at 5, 10, 15, and 25 min of exercise. Although the findings do not exclude the possibility of a compartmentalized increase in diacylglycerol level, the present data suggest that diacylglycerol is not a mediator of the insulin-induced or exercise-induced augmentation of glucose uptake by skeletal muscle in vivo. Since interruption of nerve supply to the muscles makes the muscles insulin resistant (Turinsky, J., (1987) Am. J. Physiol. 252, R531-R537), the effect of denervation on diacylglycerol and ceramide levels in calf muscles of the rat was also examined. The denervation resulted in 21, 51, and 117% increases in muscle diacylglycerol levels at 3, 16, and 32 days after denervation, respectively. No statistically significant changes in muscle ceramide levels were observed at any postdenervation interval. Finally, the measured lipids were studied in muscles and livers of rats infused with supraphysiological doses of vasopressin (86 pmol/min). In controls, diacylglycerol concentrations of the muscles and liver did not significantly differ, but the liver exhibited a 5-fold higher level of ceramides than the muscles. Infusion of vasopressin for 5 min did not have a statistically significant effect on diacylglycerol concentration of the liver but continuation of the same infusion for 10 min resulted in a 63% increase in liver diacylglycerol. The 10-min infusion had no effect on muscle diacylglycerol concentration or ceramide levels in any of the tissues studied.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
H Kanoh  T Ono 《FEBS letters》1986,201(1):97-100
Pig brain diacylglycerol kinase did not catalyze autophosphorylation. However, the kinase was phosphorylated on serine, when immunoprecipitated from the partially purified enzyme preparation preincubated with Mg2+ and [gamma-32P]ATP. The action of the endogenous protein kinase phosphorylating diacylglycerol kinase was independent of cyclic nucleotides and Ca2+, and became maximum at pH 5.5. Although the extent of enzyme phosphorylation was limited (maximally about 0.25 mol Pi incorporated per mol kinase), the results show that diacylglycerol kinase can be a phosphoprotein.  相似文献   

6.
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode approximately 55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K(m) and V(max) values were 125 microm for DAG and 0.25 pmol of PA min(-1) microg(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg(2+)-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca(2+). AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4 degrees C), pointing to a role in cold signal transduction.  相似文献   

7.
The finding that negatively charged phospholipids activate the plasma-membrane (Ca2+ + Mg2+)-ATPase and that polycations counteract this stimulation suggest that negative charges in the environment of the ATPase protein could be important for its function. The aim of the present work was to investigate whether changing the charges on the ATPase protein itself by modifying the pH within the physiological range affects the activity of the purified plasma-membrane Ca2+ pump from stomach smooth muscle. Increasing the pH from 6.9 to 7.4 and using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) as a Ca2+ buffer, doubled the ATPase activity at 0.3 microM-Ca2+ in the presence of 100% phosphatidylcholine (PC) or after substituting 20% of the PC by negatively charged phospholipids PtdIns, PtdIns4P, phosphatidylserine and phosphatidic acid. This stimulatory effect was due to an increased affinity of the enzyme for Ca2+, while the Vmax. remained unaffected. In the case of PtdIns(4,5)P2, a stimulatory effect upon alkalinization was only observed at a PtdIns(4,5)P2 concentration of 10%. When a concentration of 20% was used, alkalinization decreased the Vmax. and no stimulatory effect on the ATPase at 0.3 microM-Ca2+ could be observed. Alkalinization not only stimulated the purified Ca2+ pump, but it also increased the activity of the enzyme in a plasma-membrane-enriched fraction from stomach smooth muscle by a factor of 2.06. The ionophore A23187-induced Ca2+ uptake in closed inside-out vesicles also increased by a factor of 2.54 if the pH was changed from 6.9 to 7.4. This finding indicates that the effect of pH is most likely to be exerted at the cytoplasmic site of the Ca2+ pump protein.  相似文献   

8.
Diacylglycerol kinase is though to play a central role in the metabolism of diacylglycerol second messengers in agonist-stimulated cells. A series of diacylglycerol analogs were tested for their ability to act as substrates or inhibitors of diacylglycerol kinase with the goal of determining the substrate specificity of the enzyme, and of discovering inhibitors. Screening of these compounds was performed using a partially purified diacylglycerol kinase from pig brain. Modified assays for this enzyme using co-sonicated mixtures of diacylglycerol and anionic phospholipids were developed. This enzyme was found to be quite specific for sn-1,2-diacylglycerol (KM 24 microM for dioctanoyl-glycerol). Among the analogs investigated, only 1,2-dioctanoyl-2-amino-1,3-propanediol was utilized at a significant rate. Two analogs, dioctanoylethylene glycol (KI 58 microM) and 1-monooleoylglycerol (KI 91 microM), were potent inhibitors in vitro. These compounds were tested for effects on diacylglycerol formation and metabolism in thrombin-stimulated human platelets. Dioctanoylethylene glycol inhibited diacylglycerol phosphorylation in platelets (70-100% at 100 microM) leading to a longer-lived diacylglycerol signal. This compound may be a useful tool for studies of diacylglycerol kinase in other cell types. 1-Monooleoylglycerol treatment elevated diacylglycerol levels up to 4-fold in unstimulated platelets and up to 10-fold in thrombin-stimulated platelets. The implications with regard to the pathways of diacylglycerol metabolism in human platelets are discussed.  相似文献   

9.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

10.
Wissing J  Heim S  Wagner KG 《Plant physiology》1989,90(4):1546-1551
Diacylglycerol kinase (ATP:1,2-diacylglycerol 3-phosphotransferase, EC 2.7.1.107) from suspension-cultured Catharanthus roseus cells was extracted from a membrane fraction with 0.6% Triton X-100 and 150 millimolar NaCl and was purified about 900-fold by DEAE-cellulose, blue Sepharose, gel permeation, and phenyl-Sepharose chromatography. The enzyme is obviously membrane bound as activity in the cytosol could not be detected. In the presence of detergents such as Triton X-100 (3-[3-cholamidopropyl]dimethylamino)-1-propanesulfonate (Chaps), or deoxycholate, a molecular weight of about 250,000 was determined by gel filtration. In glycerol density gradients, the enzyme sedimented slightly more slowly than bovine serum albumin, indicating a molecular weight of less than 68,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzyme activity could be assigned to a protein of 51,000 daltons. As found previously for bacterial and animal diacylglycerol kinases, the purified enzyme was completely devoid of activity without the addition of phospholipids or deoxycholate. Cardiolipin was found to be most effective, whereas higher amounts of detergent were inhibitory. The enzyme needs divalent cations for activity, with Mg2+ ions being the most effective. Apparent Km values for ATP and diacylglycerol were determined as 100 and 250 micromolar, respectively.  相似文献   

11.
Vasopressin-induced glucose release from the perfused livers of fed rats is diminished in the presence of insulin or following adrenal ablation. The reduced rate of glucose release following vasopressin treatment in the perfused livers of adrenalectomized rats was restored towards the control value by cortisol treatment in vivo. Vasopressin did not influence the total rate of fatty acid synthesis in the livers of fed rats perfused with medium containing glucose and two concentrations of lactate. The contribution of these precursors to hepatic fatty acid synthesis and CO2 production was similarly uninfluenced by vasopressin. Vasopressin casued a transient increase in the release of K+ by the perfused liver which was observed within 2 min of hormone administration. These results are discussed in relation to the possible mode of action of vasopressin in the liver.  相似文献   

12.
Diacylglycerol kinase (EC 2.7.1.-) was purified 1,650-fold from pig brain cytosol. The purified enzyme showed a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the kinase was estimated to be 78,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar value (76,000) was obtained by Sephadex G-150 gel filtration. The activity of the purified enzyme was markedly enhanced by either deoxycholate or phospholipids. The extent of activation by phospholipids was in the order of phosphatidylcholine greater than lysophosphatidylcholine greater than phosphatidylethanolamine approximately equal to phosphatidylserine greater than sphingomyelin. Other phospholipids and unsaturated fatty acids were ineffective. Phosphatidylcholines from egg yolk and pig brain, and dioleoyl phosphatidylcholine were similarly effective. Saturated phosphatidylcholines with acyl chain lengths shorter than palmitate also gave a considerable activation. The activity with phosphatidylcholine was from 1.5- to 2.5-fold higher than that measured with deoxycholate. A very small amount of phosphatidylinositol or phosphatidylglycerol potently inhibited the phosphatidylcholine-dependent (but not deoxycholate-dependent) kinase activity. The inhibition by phosphatidylinositol was varied according to its molar ratio to phosphatidylcholine. As little as about 2.5 mol per cent of phosphatidylinositol resulted in 50% inhibition of the phosphatidylcholine-dependent kinase activity. The deoxycholate- and phosphatidylcholine-dependent kinase activities showed almost the same Km values for the substrates. In both cases, the apparent Km values for ATP and diacylglycerol were 300 microM and about 60 microM, respectively. The kinase required Mg2+ for its activity. When compared to deoxycholate, phosphatidylcholine was more effective at higher Mg2+ concentrations. The deoxycholate-dependent activity showed a broad pH optimum at around 8.0, whereas the phosphatidylcholine-dependent activity formed a clear peak at pH 7.4.  相似文献   

13.
Diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) activities were investigated in microsomes from isolated rat fat cells. Assays based on the conversion of CDP-[14C]choline of CDP-[14C]ethanolamine to phosphatidylcholine or phosphatidylethanolamine utilized ethanol-dispersed diacylglycerols and 1 to 5 microng of protein. Cholinephosphotransferase and ethanolaminephosphotransferase activities had similar dependences on MgCl2 and pH, and were inhibited similarly by CaCl2, organic solvents, Triton X-100, Tween 20, and dithiothreitol. Ethylene glycol bis(beta-amino-ethyl ether)-N,N,N',N'-tetraacetic acid stimulated both activities similarly. With 1,2-dioleoyl-sn-glycerol, the cholinephosphotransferase activity had an apparent Km for CDP-choline of 23.9 micronM and a V max of 8.54 nmol/min/mg. CDP-ethanolamine and CDP were competitive inhibitors of the cholinephosphotransferase activity (apparent Kl values of 227 micronM and 360 micronM, respectively). With 1,2-dioleoyl-sn-glycerol, the ethanolaminephosphotransferase activity had an apparent Km of 18.3 micronM for CDP-ethanolamine and a V max of 1.14 nmol/min/mg. CDP-choline appeared to be a noncompetitive inhibitor of the ethanolaminephosphotransferase activity (apparent Kl of 1620 micronM). Inhibition of the ethanolaminephosphotransferase activity by CDP appeared to be of a mixed type. The dependences on diacylglycerols containing fatty acids 6 to 18 carbons in length were investigated...  相似文献   

14.
We have examined the effect of epidermal growth factor(EGF) on three kinds of kinases activities, phosphatidylinositol(PI) kinase, phosphatidylinositol 4-phosphate[PI(4)P] kinase and diacylglycerol(DG) kinase that make important roles in the regulation of inositol phospholipids metabolism. When isolated plasma membrane vesicles from A431 cells were incubated at 30 degrees C with [gamma-32P]ATP and exogenously added DG, EGF enhanced the activity of DG kinase approximately 2-fold. This stimulation is found to be dose-dependent with a half maximal activation at 1 nM. In this case, EGF increased Vmax without changing Km Value for ATP or DG. Although this activation was observed in the absence of detergent, it was more evident when membrane vesicles were treated with 1 mM deoxycholate. Interestingly, the effect of EGF was only detected in magnesium containing medium. The use of manganese instead of magnesium diminished the stimulatory effect in either condition, presence or absence of deoxycholate. On the other hand, the stimulation of PI kinase or PI(4)P kinase activity was not caused by EGF. These results suggest that DG kinase activation by EGF makes important roles in cellular responses leading to cell growth.  相似文献   

15.
Two different types of diacylglycerol kinase (DGK) have been purified 10,455-fold (DGK I) and 7,410-fold (DGK IV) from the cytosol and membrane fractions of rat brain, respectively. The cytosolic DGK was purified by successive chromatographies on Affi-Gel Blue, Q-Sepharose F.F., Mono Q, hydroxylapatite, and ATP-agarose. The membrane-bound DGK was purified from the 2 M NaCl extract of membranes by chromatography on Affi-Gel Blue, phenyl-Superose, hydroxylapatite, and ATP-agarose. The resultant preparations contained homogeneous enzymes with a Mr of 110,000 (DGK I) and 150,000 (DGK IV) as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These enzymes both phosphorylate 1,2-dioleoyl glycerol at rates of 11.5 mumol/min/mg protein for DGK I and 5.2 mumol/min/mg protein for DGK IV. Both enzymes require divalent cations and ionic detergents for activity. Magnesium is the most potent cation for both enzymes, but Ca2+ was also found to be fairly effective. Manganese is less effective than Mg2+ or Ca2+. Anionic detergents such as sodium deoxycholate or sodium cholate stimulate the activities of both enzymes, although DGK IV is stimulated more markedly than DGK I at lower concentrations. The optimal pH for the two enzymes was found to be the same, pH 7.4. Some phospholipids such as phosphatidylserine and phosphatidylinositol elevate the kinase activities of these kinases even in the absence of detergents. DGK IV is activated more significantly than DGK I by low amounts of phospholipids. The two enzymes also show structural differences. DGK I and DGK IV give different peptide maps after digestion with Staphylococcus aureus V8 protease or alpha-chymotrypsin. The results suggest that these enzymes are different forms of DGK and may be involved in different biological processes.  相似文献   

16.
We surveyed diacylglycerol kinase in different pig tissues by using rabbit antibody immunospecific to the brain 80 kDa enzyme [Kanoh, Iwata, Ono & Suzuki (1986) J. Biol. Chem. 261, 5597-5602]. Among the other tissues examined, the immunoreactive 80 kDa enzyme was found only in the thymus and, to a much lesser extent, in the spleen, although this enzyme species was widely distributed in a variety of brain regions. Other tissues such as platelets, kidney, heart and liver contained little, if any, immunoreactive enzymes. Gel filtration of cytosolic enzymes from several tissues revealed the presence of three major activity peaks, apparently corresponding to 280, 120 and 80 kDa. Thymus and spleen contained the immunoreactive 80 kDa species together with non-immunoreactive 280 kDa enzyme. In the case of platelets, the kinase consisted almost exclusively of non-immunoreactive 120 kDa species with some 280 kDa enzyme. In an attempt to characterize the different kinase forms, the thymus enzyme was chosen for further studies because of its high activity. No immunoreactive proteins were detected in Western-blot analysis when the 280 kDa enzyme was solvent-extracted, proteinase-treated or preincubated in the presence of Ca2+. In comparison with the 80 kDa species, the 280 kDa enzyme was much more heat-stable and less dependent on deoxycholate in the assay mixture. Although the purification of different forms of the kinase is required to confirm the presence of isoenzymes, the results show that there exist several immunologically distinct diacylglycerol kinase species.  相似文献   

17.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

18.
1. The procedure, which involved 2-step sonication of microsomes at pH 7.4 and then at pH 8.5 in the presence of sodium deoxycholate and subsequent dialysis, resulted in 4-5-fold purification of choline-phosphotransferase and ethanolaminephosphotransferase with the yield of 40-50%. 2. Ethanolaminephosphotransferase was further purified 8.5-fold over microsomes by sucrose density gradient centrifugation of the partially purified preparation, while cholinephosphotransferase activity was considerably lost during this procedure. No separation of the two transferases from each other was achieved at this step. 3. Cholinephosphotransferase required Mg2+ as cofactor, and microsomal phospholipids for its maximal activity. On the other hand, Mn2+ was more effective than Mg2+ as cofactor for ethanol aminephosphotransferase, and this enzyme was inhibited by microsomal phospholipids. 4. Both transferases were stimulated several-fold by sodium deoxycholate and also showed similar optimal pH ranging from pH 8.0 to 8.5. 5. Km values for 1,2-diacylglycerol emulsion were 81.0 muM for cholinephosphotransferase and 63.0 muM for ethanolaminephosphotransferase, respectively. CDP-choline and CDP-ethanolamine competitively inhibited, with the same Ki value (both 350 muM), ethanolaminephosphotransferase and cholinephosphotransferase, respectively. The Ki values obtained were much greater than the corresponding Km values for the cytidine substrates (36.4 muM for CDP-choline and 22.0 muM for CDP-ethanolamine). 6. The partially purified enzymes were further treated with Triton X-100. When enzyme activities were assayed with Mg2+, cholinephosphotransferase, although considerably inactivated, was partially separated from ethanolaminephosphotransferase by sucrose density gradient centrifugation of Triton-treated preparations. Furthermore, cholinephosphotransferase (but not ethanol-aminephosphotransferase) itself was partially separated into Mg2+ -requiring and Mn2+ -requiring components. In contrast, ethanolaminephosphotransferase assayed with either Mg2+ or Mn2+ formed a single peak together with Mn2+ -requiring cholinephosphotransferase.  相似文献   

19.
Plasma membranes were isolated from carrot (Daucus carota L.) cells grown in suspension culture and treated with phospholipase A2 from snake or bee venom for 10 min. As a result of this treatment, phosphatidylinositol kinase activity was recovered in the soluble fraction. There was no detectable diacylglycerol kinase or phosphatidylinositol monophosphate kinase activity released from the membranes after the phospholipase A2 treatment. Treating the plasma membranes with phospholipase C or D did not release PI kinase activity. The phospholipase A2-released PI kinase was activated over 2-fold by a heat stable, soluble 70 kDa protein. The partially purified 70 kDa activator increases the Vmax but does not affect the Km of the phospholipase A2-released PI kinase.  相似文献   

20.
Diglyceride kinase in human platelets   总被引:5,自引:0,他引:5  
Human platelets contain diglyceride kinase, an enzyme that catalyzes the phosphorylation of diacylglycerol by adenosine 5'-triphosphate to yield phosphatidic acid. The majority of the platelet enzyme is particulate-bound, and membrane fractions of platelet homogenates have a higher specific activity than granule fractions. Both deoxycholate and magnesium are necessary for optimal enzyme activity. The K(m) of the enzyme for adenosine 5'-triphosphate is 1.3 mm, and the apparent K(m) for diacylglycerol is 0.4 mm. The pH optimum is 6.6-6.8 in imidazole-HCl or maleate-NaOH buffer. The enzyme activity of platelets from normal subjects was similar to the activity from patients with renal and hepatic failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号