首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT. An amoeba isolated from a wheatfield and a forest soil in Australia has been identified as Trichamoeba mycophaga n. sp. Trophozoites of this amoeba are palmate to elongate and measure 45–136 μm in length and 25–94 μm in width. Amoebae in continuous locomotion may be limax with a villous-bulb uroid. Both the lobose pseudopodia and the advancing margin of a limax trophozoite bear an ectoplasmic crescent. The plasma membrane is coated with an electron-dense amorphous layer ca. 100 nm thick. Endoplasm is granular with elongate to bipyramidal crystals and contains bacterial endosymbionts. Trophozoites have a single, spherical to oval nucleus, 4–10 μm in diameter, which contains a centrally located, spherical to oval nucleolus, 2.8–5.0 μm in diameter. The nucleoplasm contains aggregations of filaments distributed radially within the nuclear membrane. Cysts are 21–60 μm in diameter, with ecto- and endocyst walls separated by an amorphous layer.  相似文献   

2.
Pollen development in Hibiscus syriacus L. (Malvaceae) was studied with light (LM), scanning (SEM) and transmission (TEM) electron microscopes, with special attention to the formation of extremely long spines of the pollen grains. At the early tetrad stage, probacules are initiated directly on the plasma membrane and grow in coincidence with the height of primexine matrix within a callosic wall. Subsequently, a pretectum appears at the top of the probacules and then a foot layer is formed by accumulation of white line centered lamellations. Before dissolution of the callosic wall, a reticulate patterned pretectum is established around the microspores. There is not, however, any morphological indication on the initiation of the spines during the tetrad period within a callosic wall. It is after dissolution of the callosic wall that the spines of exine begin to form by the apposition of lamellated sheets. The lamellated sheets show a concentric configuration around the developing supratectal spines. The mature pollen grain is spheroidal, polycolporate, 160–170 μm in diameter, with supratectal spines 20–25 μm long. The supratectal spines of Hibiscus pollen are not homologous with the other exinous protrusions which are determined within the callosic wall during tetrad stage.  相似文献   

3.
Stages in the life cycle of a coccidium are described from the intestine of Priapulus caudatus Lamarck, 1816. Meronts, merozoites, microgamonts, microgametes, and walled and unwalled macrogametes were seen in intestinal cells. Meronts were about 8 μm long and 3–7 μm wide and produced up to seven merozoites. Free merozoites were about 9 μm long and 4 μm wide and contained about 43 subpellicular microtubules that terminated in the outer polar ring. Microgamonts were up to 23 μm long and 7 μm wide and usually were delimited by a single membrane. Microgametes were about 5 μm long, exclusive of the two flagella, about 2 μm wide, and contained a nucleus that was not uniformly dense. Macrogametes, about 6 μm in diameter, had a nucleus largely without dense chromatin. The oocyst wall formed around intracellular macrogametes to a thickness of 0.2–0.5 μm as thin, osmiophilic elements that became arranged in reticular and tubular layers. Wall-forming bodies were not seen, but fine filaments may participate in wall formation, as these were found between the outer membrane of the pellicle and the nearest wall elements. Microgametes and walled macrogametes were delivered to the lumen of the host intestine during apocrine secretion or excretion by the intestinal cells. Fertilization may occur in the intestinal lumen. Unsporulated ovoid oocysts, 18–27 μm long and 10–14 μm wide, with a 3 μm micropyle and a wall 0.6–0.7 μm thick, were passed from the host.  相似文献   

4.
Previous studies have established effects of exercise training on arterial wall thickness, remodeling, and function in humans, but the extent to which these changes are locally or systemically mediated is unclear. We examined the brachial arteries of the dominant (D) and nondominant (ND) upper limbs of elite racquet sportsmen and compared them to those of matched healthy inactive controls. Carotid and superficial femoral artery responses were also assessed in both groups. High-resolution duplex ultrasound was used to examine resting diameter, wall thickness, peak diameter, and blood flow. We found larger resting arterial diameter in the preferred arm of the athletes (4.9 ± 0.5 mm) relative to their nonpreferred arm (4.3 ± 0.4 mm, P < 0.05) and both arms of control subjects (D: 4.1 ± 0.4 mm; ND: 4.0 ± 0.4, P < 0.05). Similar limb-specific differences were also evident in brachial artery dilator capacity (5.5 ± 0.5 vs. 4.8 ± 0.4, 4.8 ± 0.6, and 4.8 ± 0.6 mm, respectively; P < 0.05) following glyceryl trinitrate administration and peak blood flow (1,118 ± 326 vs. 732 ± 320, 737 ± 219, and 698 ± 174 ml/min, respectively; P < 0.05) following ischemic handgrip exercise. In contrast, athletes demonstrated consistently lower wall thickness in carotid (509 ± 55 μm), brachial (D: 239 ± 100 μm; ND: 234 ± 133 μm), and femoral (D: 479 ± 38 μm; ND: 479 ± 42 μm) arteries compared with control subjects (carotid: 618 ± 74 μm; brachial D: 516 ± 100 μm; ND: 539 ± 129 μm; femoral D: 634 ± 155 μm; ND: 589 ± 112 μm; all P < 0.05 vs. athletes), with no differences between the limbs of either group. These data suggest that localized effects of exercise are evident in the remodeling of arterial size, whereas arterial wall thickness appears to be affected by systemic factors.  相似文献   

5.
Grids of recording electrodes etched onto printed circuit boards were used for noninvasive recording of medial (MGF) and lateral (LGF) giant nerve fiber spikes in developing earthworms, Eisenia foetida. Stereotyped patterns of throughconducted giant fiber spikes, evoked by light tactile stimulation, were first detectable in the normal crawling embryonic stage and continuned to be detectable throughout postembryonic development. Giant fiber spiking activity in normal crawling embryos was accompanied by stereotyped muscle activity and rapid escape withdrawal, suggesting that giant fiber reflex pathways are functionally intact before the worm hatches. For both the MGF and LFG, several age-de-pendent changes were noted, including the following: increases in spike conduction velocity, increases in giant fiber diameter, and decreases in spike duration. The MGF conduction velocity in normal crawling embryos was 1.1–1.6 m s?1 (6–7 μm diameter) and increased to 7.0–8.5 m s?1 (20–25 μm diameter) by 60 days after hatching. The LGF conduction velocity in normal crawling embryos was 0.7–1.1 m s?1 (2.5–4.0 μm diameter) and increased to 4.0–5.5 m s?1 (8–14 μm diameter) by 60 days after hatching. During postembryonic development MGF and LGF conduction velocities were linearly related to fiber diameter.  相似文献   

6.
In the microspore tetrad period the exine begins as rods that originate from the plasma membrane. These rods are exine units that on further development become columellae as well as part of the tectum, foot layer and “transitory endexine”. The primexine matrix is very thin in the future sites of the pores. At these sites the plasma membrane and its surface coating (glycocalyx) are without exine units and adjacent to the callose envelope. The exine around the aperture margin is characterized by units of reduced height. After the exine units and primexine matrix have become ca 0.2 μm in height a fibrillar zone forms under the aperture margin. It is the exine units around the aperture that are templates for exine processes on apertures of mature pollen. Oblique sections of the early exine show that the tectum consists of the distal portions of close-packed exine units. The exine enlarges in the free microspore period but initially its substructure (tectum, columellae, foot layer and transitory endexine) is not homogeneous and unit structures are visible until after the vacuolate microspore period. There are indications of a commissural line/plane (junction plane) which separates the foot layer from the endexine during early development. Our observations of development in Echinodorus pollen extend a growing number of reports of “transitory endexines” in monocot pollen. The exine unit-structures become 0.2 μm or more in diameter and many columellae are composed of only one exine unit. Spinules become exceptionally tall, many protruding ca 0.7 μm above the level of the tectum as units only ca 0.1 μm in diameter. The outer portion of the tectum fills in around spinules and by maturity they are microechinate with their bases spread out to ca 1 μm or more. Unit structures can be seen with SEM in mature pollen following oxidation by plasma ashing and in the tapetum these units are arranged both radially, as in spinules, and parallel with the tapetal surfaces. There are clear indications of such an arrangement of units in untreated fresh pollen. Units comprising the basal part of the exine are not completely fused by sporopollenin accumulated during development. This would seem to be a characteristic feature, based on published work, of the alismacean pollen. Our use of a tracer shows, however, that there is considerable space within or between exine structure of mature Echinodorus pollen. Based upon the ca 0.1 μm size of exine-units formed early in development and exine components seen after oxidative treatment it seems that the early (primary) accumulated sporopollenin has greater resistance to oxidation than sporopollenin added, secondarily, around and between units later in development. Both primarily and secondarily accumulated sporopollenin are resistant to acetolysis but published work indicates that acetolysis alters exine material. At the microspore tetrad time and until the vacuolate stages tapetal cells are arranged as in secretory tapetums. During early microspore stages there are orbicules at the inner surface of tapetal cells. At free microspore period tapetal cells greatly elongate into the loculus and surround the microspores. By the end of the microspore vacuolate period tapetal cells release their cellular contents and microspores are for a time enveloped by tapetal organelles and translocation material.  相似文献   

7.
Two new Myxobolus species were described infecting Brycon orthotaenia from the São Francisco River, in the state of Minas Gerais, Brazil. From a total of 39 B. orthotaenia collected, two specimens (5.1%) exhibited infection of the ovary and 12 specimens (30.8%) displayed infection of the liver. The plasmodia of both Myxobolus species were white and spherical measuring around 1 mm in length. The plasmodium found in the ovary showed mature myxospores, which were oval shaped from the frontal view and measured 9.2–11.0 (9.8 ± 0.4) μm in length, 5.9–6.9 (6.5 ± 0.3) μm in width and 4.6–5 (4.9 ± 0.1) μm in diameter. The two polar capsules were the same size and measured 3.9–6.2 (4.7 ± 0.5) μm in length and 1.8–2.4 (2.1 ± 0.2) μm in width. The polar tubules had 9 coils. The plasmodium found in the liver showed mature myxospores which were ellipsoidal in shape from the frontal view and measured 10.0–11.4 (10.7 ± 0.5) μm in length, 7.3–8.6 (8.1 ± 0.4) μm in width and 5.3–7.0 (6.8 ± 0.4) μm in diameter. The two polar capsules were the same size and measured 4.2–5.4 (4.9 ± 0.3) μm in length and 1.9–2.9 (2.7 ± 0.3) μm in width. The polar tubules had 8 coils. Ultrastructural analysis revealed an asynchronous sporogenesis process, with young developmental myxospore stages more often found in the periphery of the plasmodium and mature myxospores in the centre of the plasmodium. The plasmodial wall was formed by a single membrane which was not surrounded by a layer of host tissue. A thick layer of fibrous material was found in the peripheral ectoplasm close to the plasmodial wall of the plasmodium found in the ovary. Phylogenetic analysis based on the small-subunit ribosomal DNA – ssrDNA sequences and using the closest myxozoan sequences to each one of the species studied here based on previous GenBank data and Henneguya/Myxobolus/Thelohanellus species parasitizing fish from South American, revealed that the new species are grouped in a subclade together with other Myxobolus species parasitizing bryconid hosts.  相似文献   

8.
Nematode-trapping fungi are important biocontrol agents against parasitic nematodes through adhesive or mechanical hyphal traps. Aspergillus awamori, a root-knot-nematode-trapping fungus from tomato rhizosphere soil, was identified based on morphology and molecular characteristics of internal transcribed spacer DNA sequence. Conidial heads were white to black brown, loosely globose, and 72–127 μm in diameter. Conidiophores usually arose from the foot cell of basal mycelium, straight, and 960–1730 × 10.2–13.4 μm, hyaline to pale brown, not constricted below the vesicles; vesicles hemispherical to elongate, 43–56 μm in diameter, black brown, fertile over the upper half to two-thirds. Aspergilla were biseriate, and metulae were variable, 12–26 × 3.8–4.7 μm; phialides were 8.2–9.4 × 2.5–3 μm. Conidia were globose or subglobose, 3.6–4.8 μm in diameter, rough, grey brown and parallel in chains. A. awamori BS05 showed 44.9% control efficacy against Meloidogyne incogtina in pot experiments which suggests it as a potential biocontrol agent against Meloidogyne. This is the first report on A. awamori as nematode-trapping fungus.  相似文献   

9.
张平  徐凤霞 《广西植物》2011,31(3):328-331
采用光镜、扫描电镜和透射电镜对滇南风吹楠的花粉形态进行观察.滇南风吹楠的花粉粒呈单粒存在,远极面观为椭圆形,近极面观大体为三角形,为不等极,两侧对称.花粉粒具一条远极单萌发沟;花粉大小为(15)19.90(21) μm×(20)22.50(25) μm.花粉粒外壁纹饰为网状,网脊平均宽度为0.29 μm;网眼形状不规则...  相似文献   

10.
In Egypt, powdery mildew was observed for the first time on dill plants, during annual disease surveys of March–May 2003 and 2005. Typical symptoms of powdery mildew of dill plant (Anethum graveolens L.) were observed in Gharbeia Governorate. Symptoms of powdery mildew became common on leaves, stems inflorescences and fruits as white irregular areas. These symptoms appeared at vegetative and early flowering stages then gradually increased through fruiting and pre-maturity stages. Samples of infected leaflets, stem, inflorescences and fruits were collected for examination by light and scanning electron microscope (SEM). Microscopic examination revealed that conidiophores were short, erect–69 × 6–10 μm in dimension, conidia were observed without conspicuous fibrosin bodies singly, elliposid to ovoid 25–33 × 10–16 μm in dimension, and the length to width ratio of conidia ranged from 1.7 to 2.0 and were produced singly. Cylindrical foot cells (22.0 × 8.0 μm) were followed by one or two shorter cells (12.5 × 7.5 μm). In spring, the sexual stage (cleistothecia) appeared on infected leaves and stems in spherical, gregarious measures 105–117 (111) × 100– 87.5 μm in diameter. Each cleistothecium contained (2–4) round to ovoid asci, 45–55 (50) × 45–25 (35) μm in dimension. The ascus contained (3–4) ellipsoid to ovoid ascospores, 20–17.5 × 15–10 (13.2) μm. Cleistothecia appendages are simple myceloid branched tips measuring 80–200 (140) μm in length and 3–5 (4) μm in diameter. Based on the observations of the morphology of its anamorph and teleomorph stages, the causal agent of dill powdery mildew was identified as Erysiphe heraclei which is reported for the first time in Egypt.  相似文献   

11.
Simulated raindrops, diameter c. 3 or 4 mm, fell 13 m down a raintower onto suspensions of Septoria nodorum pycnidiospores, depth 0.5 mm, or infected straw pieces. Splash droplets were collected on pieces of fixed photographic film. It was estimated that one drop generated c. 300 spore carrying splash droplets, containing c. 6000 spores, from a concentrated spore suspension (6.5 × 105 spores/ml) and c. 25 spore-carrying droplets, containing c. 30 spores, from infected straw pieces (11 × 106 spores/g dry wt). When the target was a spore suspension in water without surfactant, most spore-carrying droplets were in the 200—400 μm size category and most spores were carried in droplets with diameter >1000 μm. When surfactant was added to spore suspensions, most spore-carrying droplets were in the 0–200 μm category and most spores were carried in droplets with diameter 200–400 μm and none in droplets >1000 μm. Regression analyses showed a significant (p < 0.001) relationship between square root (number of spores per droplet) and droplet diameter; the slope of the regression line was greatest when surfactant was added to the spore suspensions. The distribution of splash droplets with distance travelled from the target was better fitted by an exponential model than by power law or Gaussian models. The distributions of spore-carrying droplets and spores with distance were fitted better by an exponential model than by a power law model. Thus regressions of log, (number collected) against distance were all significant (p < 0.01); the slopes of the regression lines were steepest when surfactant was added to the spore suspension. At a distance of 10 cm from target spore suspensions most splash droplets and spore-carrying droplets were collected at height 10–20 cm, with none above 40 cm; at a distance of 20 cm there were most at heights 0–10 cm and 40–50 cm.  相似文献   

12.
Abstract

The gametangia of the green seaweed Halimeda tuna are spherical bodies of diameter up to 250–300 μm. They are clustered in groups of 8–10 on hundreds of threads sprouting from all pale white segments of the fertile individuals. In addition to gametes, starch-containing chloroplasts, naked starch grains and two types of spherical bodies different in size and ultrastructure are the main corpuscular components. A layer of amorphous material of irregular thickness underlies the walls which are finely and evenly rough, structureless, electron translucent and 1–1.5 μm thick. Gametangia with superficial wall warts were found also.  相似文献   

13.
The marine red alga Peyssonnelia rumoiana Kato et Masuda, sp. nov. (Peyssonneliaceae, Gigartinales) is described from warm‐ and cold‐temperate regions in Japan. It is principally characterized by having hypo‐thallial filaments comprising a polyflabelate layer, proximal perithallial cells arising from the whole upper surface of each hypothallial cell (Peyssonnelia rubra‐type anatomy) and closely packed in a firm matrix, the production of two filaments from the proximal perithallial cell, unicellular rhizoids, appressed crust margins and hypobasal calcification. The alga is distinguished from related species by: (i) its conspicuously elevated cystocarpic (100–150 μm high) and tetrasporangial (80–110 μm high) nemathecia; (ii) tetrasporangia with or without a unicellular pedicel; and (iii) large (25–45 μm in diameter by 70–115 μm in length) tetrasporangia and (iv) the production of double chains of spermatangia (Peyssonnelia harveyana‐type spermatangial development).  相似文献   

14.
The encystment of Laurenliella acuminata was divided into five stages: stage A (precystic semitransparent cell with dark-globules), stage B (precystic transparent cell), stage C (precystic pigmented cell), stage D (spherical shape without cyst wall) and stage E (young resting cyst), on the basis of observations of changes in morphology and pigmentation during encystment. The duration of these stages was also established. Observations by electron microscopy confirmed that the cyst wall, composed of four layers, is derived from different kinds of precursors which are synthesized “de novo.” The ectocyst precursors are composed of stacks of between 5 and 12 small thin plates or discs; these stacks are about 0.9 μm in length and 0.06 μm in height. The mesocyst precursors are fibrillar bodies of variable shapes, about 2.4 μm in maximum length and 0.12–0.16 μm in diameter. These precursors appear in the cytoplasm of the precystic cell during the first precystic stage (stage A). The endocyst precursors are rounded bodies surrounded by a fine membrane, and their contents appeared similar to the endocyst. The granular layer precursors are spherical bodies about 0.1–0.2 μm in diameter, surrounded by a double membrane presenting ribosomes adhering to its outer membrane. Both endocyst and granular layer precursors are observed in the precystic cytoplasm from stage B. On the basis of ultrastructural studies, a formation and growth model of the cyst wall of the hypotrichous ciliate Laurentiella acuminata is proposed.  相似文献   

15.
The atrial wall of Notophthalmus viridescens is 25–75 μm thick and is trabeculated sparsely. Coronary vessels are absent. The endocardial endothelium is continuous and has 50–60 nm-wide fenestrae with diaphragms, rests on a discontinuous basal lamina and lacks occluding junctions. Cells found in the subendothelial connective tissue are xanthophores, melanophores, mast cells, fibroblasts, macrophages, and unmyelinated nerve fibers with Schwann cell investments. Epicardial mesothelial cells contain numerous 6–7 nm filaments and lamellar bodies which resemble myelin figures. Mesothelial cell junctions include maculae adhaerentes diminutae, desmosomes, and interdigitations. The epicardial connective tissue layer is more extensive than that of the endocardium, with xanthophores and melanophores rarely present and nerve fibers never observed. The myocardium consists of a mesh-work of myocytes 3–5 cell layers thick with little intervening connective tissue. Myocytes are 6–10 μm in diameter and have two or three peripheral myofibrillae. Typical A, I, H, Z, and M bands are present with a sarcomere length of 2.5 μm. T tubules are not observed. The sarcoplasmic reticulum has subsarcolemmal dilations. The nuclear pole region contains abundant mitochondria and atrial granules, extensive Golgi, and elements of smooth and rough-surfaced endoplasmic reticulum. Lateral intercellular junctions consisting of dense plaques, frequently continuous with Z-line material, are common. Oblique and transversely oriented junctions consisting of primarily of fascia adhaerentes, are present. It appears that amphibian atrial myocytes more closely resemble those of the amphibian ventricle than those of the mammalian atrium. Structural differences between amphibian atrial and ventricular myocytes seem to be quantitative rather than qualitative in nature.  相似文献   

16.
Dispersal of Septoria nodorum Pycnidiospores by Simulated Rain and Wind   总被引:2,自引:0,他引:2  
The influence of wind on the splash dispersal of Septoria nodorum pycnidiospores was studied in a raintower/wind tunnel complex with single drops or simulated rain falling on spore suspensions or infected stubble with windspeeds of 1.5 to 4 m/sec. When single drops fell on spore suspensions (depth 0.5 mm, concentration 7.8 × 105 spores/ml) most of the spore-carrying droplets collected on fixed photographic film between 0–4 m downwind (windspeed 3 m/sec) were >200 μm in diameter. However, most spores were carried in droplets with diameter > 1000 μm, 70 % of which carried more than 100 spores. When simulated rain fell on infected stubble most of the spore-carrying droplets collected beyond 1 m downwind (windspeeds 1.4 and 4 m/sec) were <200 μm in diameter and none were >600 μm; most of these droplets carried only one spore. The distribution of splash droplets (with diameter >100 μm) deposited on chromatography paper showed a maximum at 40–50 cm upwind of the target but many more droplets were deposited 20–30 cm downwind, when single drops fell on a spore suspension (concentration 1.2 × 105 spores/ ml) containing fluorescein dye with a windspeed of 2 m/sec; droplets were collected up to 3 m downwind but not more than 70 cm upwind. With a windspeed of 3 m/sec, numbers of sporecarrying droplets and spores collected on film decreased with increasing distance downwind; most were collected within 2 m of the target but some were found up to 4 m. When simulated rain fell on infected stubble, increasing the windspeed from 1.5 to 4 m/sec greatly increased the number of spores deposited more than 1 m downwind. At 1.5 m/sec none were collected beyond 2 m downwind, whereas at 4 m/sec some were collected at 4 m. A few air-borne S. nodorum spores were collected by suction samplers at a height of 40 cm at distances up to 10 m downwind of a target spore suspension on which simulated rain fell.  相似文献   

17.
Using transmission electron and fluorescent microscopes, Mycoplasma-like organisms (MLOs) were found in phloem cells of stems and leaves of Ammobium alatum. The diameter of these organisms ranged from 0.12–0.73 μm and averaged 0.4 μm. Symptoms induced by MLOs included chlorosis and reddening of leaves and winged stems, plant stunting and flower phyllody. This is the first report of MLOs associated with disease symptoms in A. alatum.  相似文献   

18.
Three new benthic, photosynthetic dinoflagellate species, Prorocentrum norrisianum, Prorocentrum tropicalis, and Prorocentrum reticulatum, from floating detritus and coral rubble of Central America are described from scanning electron micrographs. Species were identified based on shape, size, surface micromorphology, thecal plate ornamentation, and architecture of the periflagellar area and intercalary band. Cells of P. norrisianum are ovate with a cell size of 20–25 μm long and 13–16 μm wide. The theca is delicate, its surface smooth, pores species specific with 95 to 105 pores per valve. Pores are round with a diameter of about 0.1 μm. The periflagellar area is V-shaped, located on the right valve in a shallow depression. It has no ornamentation. The flagellar and auxiliary pores are unequal in size. The intercalary band is smooth. Prorocentrum tropicalis cells are ovoid, 50–55 μm long and 40–45 μm wide in valve view with maximum width behind the middle region, narrow at the anterior end. The periflagellar area, situated in the right valve, is a V-shaped wide triangle with a deeply indented depression; the left valve exhibits a flat ridge. The periflagellar area is unornamented, and the flagellar and auxiliary pores are unequal in size. The valve surface is rugose with evenly distributed valve poroids. Each poroid appears to have a small dome in the center. The intercalary band is rimlike around the cell margin, granulated, and horizontally striated. Prorocentrum reticulatum cells are oblong in valve view; cells are 55–60 μm long and 40–45 μm wide. Thecal surface is reticulated; it is composed of a labyrinth of ridges with alternating depressions that vary in size and shape. Each depression has a narrow, oblong-kidney-shaped opening about 0.6 μm long. The periflagellar area is a deep, V-shaped triangle. The right valve of P. reticulatum is excavated, and contains a large flagellar pore and a smaller auxiliary pore surrounded by a narrow apical collar. The left valve margin exhibits a curved flat ridge. The intercalary band is smooth.  相似文献   

19.
Synaptosomes from the rat medulla and spinal cord have been examined in an attempt to formulate morphological criteria for distinguishing between those found in two subfractions of P1 (nuclear fraction). The mean diameter of those in the lighter of the subfractions (P1C) is 0.6 μm, with a preponderance in the range 0.4–0.6 μm and a minor peak at 0.7–0.8 μm. Subjunctional bodies are associated with 60.2% of the junctional regions in this subfraction. By contrast, those in the heavy subfraction (P1D) have a larger overall diameter (0.7 μm), a greater percentage of them have visible junctional regions (68.1% opposed to 51.6%), but of the junctional regions a lower percentage have associated subjunctional bodies (36.2%). The subjunctional bodies consist of a central core with five spokes radiating from it. The tips of the spokes are connected by fine strands which connect individual bodies to neighboring ones, as well as to the postsynaptic thickening. The persistence of subjunctional bodies in synaptosomes highlights the strergth of the attachment between them and the postsynaptic thickening, and suggests that these bodies may be integral components of the “postsynaptic thickening complex.” They may also help in the formulation of criteria by which different populations of these synaptosomes may be separated from each other.  相似文献   

20.
Envelopes of the mineralizing protist, Trachelomonas hispida var. coronata Lemm., were examined by light and electron microscopy and by electron diffraction analysis. The ellipsoidal hollow envelope is made of mineralized strands of mucilage (muci-strands) that form a compact wall 0.2–4.0 μm thick, interspersed with numerous puncta 0.2–0.3 μm in diameter and, in some instances with tapered spines ca. 0.6 μm long and 0.7 μm wide at the base. The mucilage strands are cylindrical, anastomosing threads 20 nm thick. Electron-dense, needle-shaped mineral deposits form axial cores in the strands. Also, powdery granular mineral deposits are dispersed sparingly throughout the mucilage matrix. Micromicro-electron diffraction analyses verify the crystalline nature of the needle-shaped deposits, which are 4–9 nm thick and vary in length (20–100 nm). The mucilage strands and microcrystallites pervade the whole of the envelope matrix, including the spines, and may be preferentially oriented along the envelope surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号