首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The eudicot clade of angiosperms is characterised by simultaneous microsporogenesis and tricolpate pollen apertures. Successive microsporogenesis, where a distinct dyad stage occurs after the first meiotic division, is relatively rare in eudicots although it occurs in many early branching angiosperms including monocots. An extensive literature survey shows that successive microsporogenesis has arisen independently at least six times in eudicots, in five different orders, including Berberidaceae (Ranunculales). Microsporogenesis and pollen apertures were examined here using light and transmission electron microscopy in eleven species representing six genera of Berberidaceae. Successive microsporogenesis is a synapomorphy for the sister taxa Berberis and Mahonia (and possibly also Ranzania), the remaining genera are simultaneous. Callose wall formation in Berberis and Mahonia is achieved by centripetal furrowing, though centrifugal cell plates are more usual for this microsporogenesis type. This discrepancy could reflect the fact that the successive type in Berberidaceae is derived from the simultaneous type, and centripetal furrowing has been retained. Eudicots with successive microsporogenesis usually produce tetragonal or decussate tetrads, though occasional tetrahedral or irregular tetrads in Berberis and Mahonia indicate that the switch from simultaneous to successive division is incomplete or “leaky”. In contrast, linear tetrads produced by successive microsporogenesis in Asclepiadoideae (Apocynaceae s.l.) are the result of a highly specialised developmental pathway leading to the production of pollinia. Pollen in successive eudicots is dispersed as monads, dyads, tetrads, and as single grains in pollinia. Apertures are diverse, and patterns include spiraperturate, clypeate, irregular, monocolpate, diporate and inaperturate. It is possible that successive microsporogenesis, although rare, potentially occurs in other eudicots, for example, in species where pollen is inaperturate.  相似文献   

2.
Astragalus is with nearly 3000 described species the largest genus of flowering plants. So far analyses of pollen characters have only been conducted for a few species of the groups within the genus. Here we analyse pollen grains of 22 species representative for Astragalus section Hymenostegis using scanning electron microscopy. We found the basic shape of the pollen grains to be oblate-spheroidal and apertures to be tricolpate as for other eudicots. The sculpturing pattern of the exine is micro-reticulate. Pollen grains show low morphological variation among different species of this section, but differences occur between sections of the genus. We conclude that the vast morphological differentiation that occurred during the rapid radiation of section Hymenostegis was not accompanied by comparable differentiation in pollen morphology.  相似文献   

3.
BACKGROUND AND AIMS: The phylogenetic affinities of the aberrant monotypic genus Duparquetia (subfamily Caesalpinioideae) are at present unresolved. Preliminary results from molecular analyses suggest a basal, isolated position among legumes. A study of Duparquetia pollen was carried out to provide further morphological characters to contribute to multi-data set analyses. Understanding the development of Duparquetia pollen was necessary to clarify the orientation of the apertures. METHODS: Pollen grains and developing microspores were examined using light microscopy, confocal microscopy and scanning electron microscopy. Evidence for the orientation of the apertures was provided by the examination of microspores within developing tetrads, using (a) confocal microscopy to locate the position of the ectoapertures, and (b) light microscopy and Alcian blue stain to locate the position of the endoapertures. KEY RESULTS: Confocal microscopy has been used for the first time to examine developing microspores in order to obtain information on ectoapertures that was unavailable using other techniques. Pollen in Duparquetia develops in tetrahedral tetrads as in other eudicots, with the apertures arranged in a modified pattern following Fischer's rule. Pollen grains are asymmetrical and have one equatorial-encircling ectoaperture with two equatorial endoapertures, a unique feature in Leguminosae, and in eudicots. CONCLUSIONS: The pollen morphology of Duparquetia is so unusual that it provides little information to help determine its closest relatives. However, it does fit with a pattern of greater pollen morphological diversity in the first-branching caesalpinioid legume groups than in the more derived clades. The latitudinal ectoaperture of Duparquetia is unique within the Fabales and eudicot clades, resembling more closely the monosulcate pollen found in monocots and basal angiosperms; however, developmental patterns are recognizably similar to those of all other legume pollen types.  相似文献   

4.
Aperture morphology of tetrad pollen of Epilobium luteum (Onagraceae: Epilobieae) from three Alaskan collections is highly variable. The first collection appears to lack apertures altogether and is presumed to consist of immature pollen gains in a genus known to achieve mature size before the apertures become distinctly protruding. A second collection has tetrads with 3- and 4-apertured grains, the apertures in the latter are often irregularly spaced and not in apposition with the apertures of neighboring members. The third collection consists of the more typical 3-apertured members that characterize the majority of Epilobium pollen grains. In all of these collections individual pollen grains (monads) are interspersed among the tetrads. The variations in the number of apertures emphasize the importance of having a comprehensive understanding of the stage of development of the pollen (taxon) examined when describing pollen collections. In the first collection this would mean the recognition that in Onagraceae apertures occur in the later stages of microspore ontogeny. In the latter two collections a thorough background of the literature of the pollen morphology on this largest Onagraceae taxon is useful for the understanding of the significance of a range of aperture numbers on Epilobium pollen grains.  相似文献   

5.
Phylogenetic analyses based on morphology placeAnaxagorea and other taxa with granular monosulcate pollen, as in otherMagnoliales, at the base ofAnnonaceae. Taxa with columellar tetrads, granular tetrads, and inaperturate monads form a derived clade. To test the systematic importance of palynology, we analyzed the data set with pollen characters removed. The result was lower resolution and a different rooting of the family, betweenUvariopsis and other groups with columellar tetrads.Anaxagorea and other monosulcates are higher in the tree, implying that granular monosulcate pollen, laminar stamens, and irregular endosperm ruminations are reversals. This rooting is highly unparsimonious when pollen characters are included, and only weakly supported over theAnaxagorea rooting when pollen is excluded. Together with preliminary molecular analyses, these experiments confirm the special value of palynology in systematics ofAnnonaceae. This paper is dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday  相似文献   

6.
Triaperturate pollen in the monocotyledons: configurations and conjectures   总被引:2,自引:0,他引:2  
Triaperturate pollen are known in at least twenty seven genera of monocotyledons. Differences between aperture type and polarity indicate that the development of three apertures has occurred a number of times. Mode of cytokinesis during microsporogenesis is compared with differences in aperture configuration, to assess the extent to which this appears to influence aperture arrangement. Triapertury in monocot pollen tends to fall into one or another of three situations: 1) it is the normal state, 2) it is fairly common, but pollen with more or less apertures also occur in the taxon or sample, 3) it is a rare, or abnormal state for pollen which usually has less than three apertures. The various forms of triaperturate pollen are described, as well as monosulcate pollen of the orchid genera Cypripedium and Paphiopedilum, often misinterpreted as tri-sulcate, and the unusual extended trichotomosulcate pollen of Agrostocrinum (Hemerocallidaceae). Monosulcy, trichotomosulcy, and zonasulcy, with unusual and rare exceptions of zonasulcy in the eudicots, are aperture states shared exclusively with the basal dicots. Furthermore, to some extent all have links with the triaperturate condition in monocots and basal dicotyledons. This is discussed, as well as the association of tripory with polypory in monocots and basal dicots. The fossil pollen record is considered.This paper is dedicated to Klaus Kubitzki in recognition, not only for his extensive contribution to systematic botany, but also for his firm belief that pollen characteristics contribute to a better understanding of plant systematics and evolution.  相似文献   

7.
The Podostemaceae, or river-weeds, comprise 46 genera and 270 species of dicots and are the largest family of strictly aquatic angiosperms. Despite the large size, specialized habitats, and enigmatic morphology of the family, relatively little is known about the palynology of Podostemaceae. In the current paper, pollen morphology and ultrastructure of Marathrum schiedeanum are described. Pollen grains are relatively small, spheroidal, and tricolpate to spiraperturate. The exine has a microechinate ornament, a tectate-granular sexine and a relatively thick nexine in non-apertural regions, and a semitectate sexine and thinner nexine in apertural regions. Although aperture variation occurs in the family, this is the first report of the spiral aperture type in Podostemaceae. The spiraperturate condition appears to be derived in river-weeds, as does the granular pollen wall, which represents a reduction of the typical columellae found in eudicots.  相似文献   

8.
Pollen grains are generally surrounded by an extremely resistant wall interrupted in places by apertures that play a key role in reproduction; pollen tube growth is initiated at these sites. The shift from a proximal to distal aperture location is a striking innovation in seed plant reproduction. Reversals to proximal aperture position have only very rarely been described in angiosperms. The genus Tillandsia belongs to the Bromeliaceae family, and its aperture pattern has been described as distal monosulcate, the most widespread aperture patterns recorded in monocots and basal angiosperms. Here we report developmental and functional elements to demonstrate that the sulcate aperture in Tillandsia leiboldiana is not distal as previously described but proximal. Postmeitotic tetrad observation indicates unambiguously the proximal position of the sulcus, and in vitro germination of pollen grains confirms that the aperture is functional. This is the first report of a sulcate proximal aperture with proximal germination. The observation of microsporogenesis reveals specific features in the patterns of callose thickenings in postmeiotic tetrads.  相似文献   

9.
Apertures are key characters of pollen grains with systematic importance in angiosperms. They function as sites for pollen tube exit, water uptake, transfer of recognition substances and accommodation of volume changes. Not all pollen has apertures; inaperturate pollen (lacking obvious apertures) characterizes many angiosperm groups, especially in early divergent angiosperms and monocots, but also eudicots. In order to expand our knowledge of the systematic distribution, possible functional significance and development of inaperturate pollen in angiosperms, this review focuses on inaperturate and cryptoaperturate (with hidden apertures) pollen in the large eudicot clade, which comprises about 75% of present‐day angiosperm species. It includes new TEM observations of inaperturate pollen from four exemplar taxa selected from different parts of the eudicot phylogeny. Two categories of inaperturate (including cryptoaperturate) pollen occur in eudicots. (1) Sterile attractant or feeding pollen associated with functional dioecy has evolved iteratively at least six times in conjunction with complex breeding systems in the core eudicots. (2) Fertile pollen has evolved numerous times independently throughout eudicots, though generally in a relatively small number of individual taxa. Notable exceptions are the petaliferous crotonoid Euphorbiaceae s.s., in which fertile inaperturate pollen occurs in c. 1500 species, and two subfamilies of Apocynaceae s.l. (Secamonoideae and Asclepiadoideae) with c. 2500 species with fertile inaperturate pollen in pollinia. Fertile inaperturate pollen is sometimes (but not always) associated with an aquatic habit, parasitism, insectivory, heterostyly, anemophily or pollinia. Most fertile inaperturate pollen has a thin exine, or the exine is largely restricted to isolated components (muri, protuberances, subunits) separated by thinner areas which probably function as apertures. In cryptoaperturate pollen, the aperture is covered by continuous exine which probably has a protective function, similar to an operculum. Developmentally, inaperturate pollen is not associated with any particular tetrad type or meiotic spindle orientation (unlike some apertures) due to the absence of a colpal shield of endoplasmic reticulum or other organelles and hence is independent of microsporogenesis type. The lack of a colpal shield during the tetrad stage of development permits complete deposition of first primexine and then exine around each microspore, possibly mediated by the action of the DEX1 protein. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 29–48.  相似文献   

10.
DULBERGER  R. 《Annals of botany》1989,63(4):421-431
The apertural wall in tricolpate pollen of Linum grandiflorumwas investigated in order to understand its functioning duringdesiccation and rchydration. Whole and sectioned pollen grainswere studied with light or electron microscopy and by cytochemicalmeans. The areas of the apertures were examined in fresh drypollen, in grains moistened on agar gel or removed from compatiblestigmas, and in pollen from mature undehisced anthers The intine was found to consist of an inner ß-glucanlayer and an outer pectic layer. At the apertures the pecticlayer is thickened and overlaid by a ß-glucan layer.The pectinaceous intine stains red with basic fuchsin. The presenceof a third wall layer, the medine, was not confirmed. The aperturalintine thickenings possess considerable imbibitional capacityand at rehydration they appear as swollen lenticular bodies A procedure is described for obtaining intact exine free grains(EFG's) and whole, separated exines of L. grandiflorum. Invariably,the released EFG's consisted of protoplasts encased in the cellulosicintine. In most grains the outer intine remained attached tothe separated exine In L. grandiflorum the outer wall of the aperture expands whilethe protoplast and endintine are still infolded. Apparently,the exintine becomes detached from the endintine during desiccationand re-attaches at rehydration. It is suggested that the transientdetachment controls the influx of water into the vegetativecell Except for morph-specific exine processes no differences instructure of the aperture wall or its functioning at rehydrationwere observed between pin and thrum grains Pollen wallM, apertures, exintine, exine free grains, rehydration, desiccation, Linum grandiflorum  相似文献   

11.
F. B. Sampson 《Grana》2013,52(1-3):153-157
The development of the encircling aperture of pollen grains or the New Zealand species Laurelia novae-zelandiae is described by means of light and scanning electron microscopy. Some observations are also reported from pollen development and structure in the South American species Laurelia sempervirens, mature pollen of which can be distinguished from that of L. novae-zelandiae. The aperture begins to develop while pollen of L. novaezelandiae is still in tetrads, and passes through the distal and proximal poles of each grain. The widest parts of the mature aperture are at and near what are morphologically the distal and proximal poles of each grain. No such meridionosulcate type of pollen was recorded in a recent survey of pollen aperture types of primitive angiosperms and contradicts a recent report that pollen in the Atherospermataceae had equatorially aligned apertures.  相似文献   

12.
Summary.  In eudicot postmeiotic tetrads, apertures are usually joined in pairs in highly conserved areas. These appear to be located at the last points of contact persisting at the end of cytokinesis between the cytoplasm of the future microspores. In order to investigate the relationship between cytokinesis and aperture formation, aperture distribution within postmeiotic tetrads and the progression of meiosis were studied in Nicotiana tabacum cv. Ambalema. This variety (inbred line) produces about 85% tricolporate pollen and 15% tetracolporate pollen grains. In addition, about 7% of tetrads are composed of four equal-sized microspores and a supernumerary pseudomicrospore of small size and an equal proportion of tetrads exhibit unpaired apertures (these apertures are not joined in pairs within tetrads). Observation of cytokinesis indicates that both unpaired apertures and pseudomicrospores could result from the persistence of late communications between microsporocytes. Observations of tetrads indicate that an increase in the number of elements that are separated during cytokinesis is correlated with an increase in microspore aperture number. All data converge to support the hypothesis that aperture site determination is partly controlled by the number of walls formed to separate the different elements of the tetrad. Received May 22, 2002; accepted October 29, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Laboratoire de Ecologie, Systematique et Evolution, Batiment 362, Université Paris Sud, 91405 Orsay cedex, France.  相似文献   

13.
BACKGROUND AND AIMS: Early developmental events in microsporogenesis are known to play a role in pollen morphology: variation in cytokinesis type, cell wall formation, tetrad shape and aperture polarity are responsible for pollen aperture patterning. Despite the existence of other morphologies, monosulcate pollen is one of the most common aperture types in monocots, and is also considered as the ancestral condition in this group. It is known to occur from either a successive or a simultaneous cytokinesis. In the present study, the developmental sequence of microsporogenesis is investigated in several species of Asparagales that produce such monosulcate pollen, representing most families of this important monocot clade. METHODS: The developmental pathway of microsporogenesis was investigated using light transmission and epifluorescence microscopy for all species studied. Confocal microscopy was used to confirm centripetal cell plate formation. KEY RESULTS: Microsporogenesis is diverse in Asparagales, and most variation is generally found between families. It is confirmed that the whole higher Asparagales clade has a very conserved microsporogenesis, with a successive cytokinesis and centrifugal cell plate formation. Centripetal cell wall formation is described in Tecophilaeaceae and Iridaceae, a feature that had so far only been reported for eudicots. CONCLUSIONS: Monosulcate pollen can be obtained from several developmental pathways, leading thus to homoplasy in the monosulcate character state. Monosulcate pollen should not therefore be considered as the ancestral state unless it is produced through the ancestral developmental pathway. The question about the ancestral developmental pathway leading to monosulcy remains open.  相似文献   

14.
Beschorneria yuccoides (Agavaceae) microspores are arranged mostly in planar tetrads. Later on, the pollen grains of the tetrad usually fall apart, but sometimes remain loosely connected by ektexine elements. The ektexine consists of a tectum, of short columellae, and of a thin, discontinuous foot layer. An endexine is absent. The bilayered intine is without any additional thickening that would usually indicate an aperture region. From this point of view the pollen grain might be considered as omniaperturate. The pollen ornamentation is reticulate with wide lumina and robust, smooth muri.

The pollen grains show an indistinct sulcus characterised by a loose reticulate ornamentation. The sulcus is not exactly at the distal pole, but shifted towards the equator. No pollen tubes are formed regularly at the sulcus. Instead, pollen tubes are normally formed at the proximal pollen face. The proximal area, indicating a large germination field, is morphologically and functionally clearly an aperture (a germination zone); however, it does not represent a sulcus. The proximal face of all pollen grains appears as ornamented, with some exine lumps.

Asimina triloba (Annonaceae) pollen is shed in permanent planar or decussate tetrads. The distal sides are microreticulate to foveolate, and do not show an aperture; the psilate proximal sides are the germination areas of A. triloba.

The presence of apertures placed at the proximal pole was reported for distinct taxa of several angiosperm families. For Drosera, Dionaea (Droseraceae) and most probably for the diaperturate Cuphea species (Lythraceae) the existence of polar germination areas can be excluded. However, in some Annonaceae taxa with permanent tetrads (Annona cherimola, Asimina triloba) a situation similar to Beschorneria might be present, and indeed a proximal polar pollen tube is formed. Beschorneria yuccoides, Annona cherimola and Asimina triloba are unequivocal examples of angiosperm pollen with an exactly proximal aperture (germination area).  相似文献   

15.
Thirty-three angiosperm pollen species are here reported from mid-Cretaceous deposits of the Kachaike Formation, Austral Basin, southern Argentina. Clavatipollenites is the most abundant angiosperm genus, with six well-defined morphological groups recognised on the basis of their reticulum morphology and sculpture. Pollen of eudicots are scarce, represented by tricolpate (Psilatricolpites spp. and Tricolpites spp.), tricolporoidate and tricolporate morphotypes (Dryadopollis spp.). Increasing complexity in the aperture structure is seen throughout the sequence; tricolpate and tricolporoidate forms are recorded in almost all samples, while tricolporate pollen grains are restricted to the middle and upper levels of the unit. The high species richness and abundance of monocolpate-ulcerate angiosperm related to monocots or magnoliids sensu lato recorded in the unit is comparable to that previously recognised in other assemblages from the early and middle Albian of the southern (e.g. Australia) and northern hemispheres (e.g. Western Portuguese basin, Europe). The recorded increase in the number of angiosperm species towards the middle and upper parts of the Kachaike Formation, with the presence of monocolpate, tricolpate, tricolporoidate and tricolporate pollen, suggests an early-early middle Albian age for these parts of the unit, in agreement with the early Albian age proposed for its basal levels on the basis of dinoflagellates.  相似文献   

16.
Pollen tetrads within Amaryllidaceae are reported for the first time for Stenomesson elwesii. Tetrads were examined with light and scanning and transmission electron microscopy. The tetrads are tetragonal in shape. Tetrad-members are rounded-triangular in equatorial view and elliptic in polar view. Average polar diam is 50.1 μm; average longest equatorial diam is 62.5 μm. Morphology of the aperture is monosulcate. Exine sculpturing of the intectate pollen is gemmate. Systematic implications are briefly discussed.  相似文献   

17.
Ambrosia artemisiifolia L. from Ambrosia of the Heliantheae of the Asteraceae family is a recognized harmful weed worldwide and one of the major invasive foreign plants in China. In this study, we investigated its reproductive features, focusing on its microsporogenesis, microgametogenesis, and pollen morphology. The results show that (1) Ambrosia artemisiifolia L. is a dicotyledonous plant and has spherical, tricolpate pollen grains with spiny outer wall; (2) its anther wall comprises four layers, namely epidermis, endothecium, middle layers, and amoeboid tapetum; (3) cytokinesis of microspore mother cells is successive; (4) most of tetrads are tetrahedral; and (5) mature pollen grains are three-celled. In conclusion, although Ambrosia artemisiifolia L. is a dicotyledonous plant with tricolpate pollen, its microsporogenesis is successive, which is different from typical dicots.  相似文献   

18.

Background and Aims

Microsporogenesis in monocots is often characterized by successive cytokinesis with centrifugal cell plate formation. Pollen grains in monocots are predominantly monosulcate, but variation occurs, including the lack of apertures. The aperture pattern can be determined by microsporogenesis features such as the tetrad shape and the last sites of callose deposition among the microspores. Potamogeton belongs to the early divergent Potamogetonaceae and possesses inaperturate pollen, a type of pollen for which it has been suggested that there is a release of the constraint on tetrad shape. This study aimed to investigate the microsporogenesis and the ultrastructure of pollen wall in species of Potamogeton in order to better understand the relationship between microsporogenesis features and the inaperturate condition.

Methods

The microsporogenesis was investigated using both light and epifluorescence microscopy. The ultrastructure of the pollen grain was studied using transmission electron microscopy.

Key Results

The cytokinesis is successive and formation of the intersporal callose wall is achieved by centrifugal cell plates, as a one-step process. The microspore tetrads were tetragonal, decussate, T-shaped and linear, except in P. pusillus, which showed less variation. This species also showed a callose ring in the microsporocyte, and some rhomboidal tetrads. In the mature pollen, the thickening observed in a broad area of the intine was here interpreted as an artefact.

Conclusions

The data support the view that there is a correlation between the inaperturate pollen production and the release of constraint on tetrad shape. However, in P. pusillus the tetrad shape may be constrained by a callose ring. It is also suggested that the lack of apertures in the pollen of Potamogeton may be due to the lack of specific sites on which callose deposition is completed. Moreover, inaperturate pollen of Potamogeton would be better classified as omniaperturate.Key words: Alismatales, callose, microsporogenesis, pollen aperture, Potamogeton illinoensis, P. polygonus, P. pusillus, tetrad shape  相似文献   

19.
In Onagraceae, pollen is shed in mature tetrads in most Epilobieae, many species of Ludwigia (Jussiaeeae), and two closely related species of the large genus Camissonia (Onagreae). Mature tetrads of Camissonia cardiophylla and representative species of Epilobium and Ludwigia were examined with light, scanning, and transmission electron microscopes. Morphological diagnoses of monad units indicated that individual taxa could be readily distinguished. Statistical analyses of tetrads which remained after acetolysis treatment revealed significant differences in the strength of the binding mechanisms. Mechanisms of tetrad cohesion were found to consist of two principal types. Common to all taxa is cohesion of pollen wall surfaces at the aperture margins; this mechanism is well known in many angiosperm groups. With the exception of Camissonia, the remaining taxa also display binding by means of short exine fragments between adjacent pollen units. These fragments, termed bridges and reported here for the first time, are located in the area extending from the aperture margins to near the center of the proximal exine faces. Thin sections reveal that layers of the bridges are identical with those of the exine. Comparisons were made between bridges and viscin threads, both of which occur on the proximal faces of the grains. Viscin threads are present on all pollen grains in Onagraceae and exhibit distinctive morphologies, and bridges were viewed morphogenetically as related to viscin threads but including an endexine layer and occupying a position near the apertures where cohesion of wall surfaces also occurs. In an evolutionary sense, the formation of mature tetrads almost certainly occurred independently in Camissonia and may have done so in Ludwigia and the Epilobieae.  相似文献   

20.
Studies of the earliest Cretaceous angiosperms in the 1970s made only broad comparisons with living taxa, but discoveries of fossil flowers and increasingly robust molecular phylogenies of living angiosperms allow more secure recognition of extant clades. The middle to late Albian rise of tricolpate pollen and the first local dominance of angiosperm leaves mark the influx of near-basal lines of eudicots. Associated flowers indicate that palmately lobed ‘platanoids’ and Sapindopsis are both stem relatives of Platanus, while Nelumbites was related to Nelumbo (also Proteales) and Spanomera to Buxaceae. Monocots are attested by Aptian Liliacidites pollen and Acaciaephyllum leaves and Albian araceous inflorescences. Several Albian–Cenomanian fossils belong to Magnoliidae in the revised monophyletic sense, including Archaeanthus in Magnoliales and Virginianthus and Mauldinia in Laurales, while late Barremian pollen tetrads (Walkeripollis) are related to Winteraceae. In the basal ANITA grade, Nymphaeales are represented by Aptian and Albian flowers and whole plants (Monetianthus, Carpestella and Pluricarpellatia). Epidermal similarities of lower Potomac leaves to woody members of the ANITA grade are consistent with Albian flowers assignable to Austrobaileyales (Anacostia). Aptian to Cenomanian mesofossils represent both crown group Chloranthaceae (Asteropollis plant) and stem relatives of Chloranthaceae and/or Ceratophyllum (Canrightia, Zlatkocarpus, Pennipollis plant and possibly Appomattoxia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号