首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was carried out over a 2-year period (2001 and 2002) with the aim of identifying the fungal population in the aerosol of the Southern city of Caxias do Sul, RS, Brazil. Sampling was performed using Hirstȁ9s non-viable volumetric method. Our results show the presence of a large number of fungal spore types, a total of 41. Three groups were predominant: Deuteromycotina, Ascomycotina and Basidiomycotina. In 2001, Deuteromycotina taxa represented 44.61% of the total annual spore counts, with the largest concentration occurring in the fall (58,637 spores); in 2002, it represented 40.03% of the total annual spore counts, and the largest concentration was obtained in the summer (68,317 spores). Ascomycotina was present at the same level (24.5%) in both years of sampling, and the highest concentrations were found out in the summer (2001: 42,183 spores; 2002: 29,461 spores). Basidiomycotina represented 22.37% of the total annual spore counts in 2001, and 20.41% in 2002, with the largest concentrations found in the summer (2001: 35,988 spores; 2002: 30,212 spores). The most frequent fungi found during the study period were Cladosporium, Coprinus, Leptosphaeria, Aspergillus/Penicillium and Ganoderma. Permanent aerobiological monitoring would be necessary to detect associated environmental variations.  相似文献   

2.
Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m(3) or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m(3) to highs over 170,000 total spores/m(3) in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.  相似文献   

3.
This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m?3; Mérida 53 spores m?3 and Málaga 35 spores m?3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.  相似文献   

4.
Pollen and spore prevalence data from 14 air sampling stations were retrospectively analyzed for accuracy of taxa identification and counting. Pollen identification was excellent and levels calculated by our laboratory closely matched those reported by most stations. Neither identifications nor counts were routinely reliable for fungus spores. While Alternaria was usually counted correctly, Cladosporium was frequently undercounted, and ascospores and basidiospores, which often constituted more than half the total spore load, were either not counted or severely undercounted. Errors resulted from undercounting, poor recognition, and reporting (including naming) errors. Multisite aerobiological studies that include documentation of fungus spore levels must include pretraining for each technician, and carefully documented standardization of counting and reporting procedures.  相似文献   

5.
A universal method for the complete assessment of atmospheric fungal spores does not exist, which is continuous, volumetric and non-selective, and offers at the same time reliable identification of the collected spores. To perform a survey of airborne fungal spores, a choice has to be made between a viable and non-viable method. For the study carried out in Leiden, the non-viable, continuous volumetric method has been employed, showing the results over a period of 10 years, for 10 microscopically identifiable fungal spore types. Of this selection,Cladosporium spores have by far the highest airborne quantities, with an average annual total of the daily averages of over 700 000.Botrytis, Ustilago andAlternaria follow with much lower spore concentrations of between 20 000 and 30 000 as annual totals. The spore types ofEpicoccum, Erysiphe, Entomophthora, Torula, Stemphylium, andPolythrincium are represented with annual sums lower than 10 000. A spore calendar shows the overall seasonal appearance of the 10 selected types.  相似文献   

6.
A universal method for the complete assessment of atmospheric fungal spores does not exist, which is continuous, volumetric and non-selective, and offers at the same time reliable identification of the collected spores. To perform a survey of airborne fungal spores, a choice has to be made between a viable and non-viable method. For the study carried out in Leiden, the non-viable, continuous volumetric method has been employed, showing the results over a period of 10 years, for 10 microscopically identifiable fungal spore types. Of this selection,Cladosporium spores have by far the highest airborne quantities, with an average annual total of the daily averages of over 700 000.Botrytis, Ustilago andAlternaria follow with much lower spore concentrations of between 20 000 and 30 000 as annual totals. The spore types ofEpicoccum, Erysiphe, Entomophthora, Torula, Stemphylium, andPolythrincium are represented with annual sums lower than 10 000. A spore calendar shows the overall seasonal appearance of the 10 selected types.  相似文献   

7.
The Burkard 7-day spore trap with standard orifice is commonly used by researchers in sampling outdoor air. The alternate orifice is reported to have higher efficiency in collecting small airborne fungal spores; however, no previous studies compared Burkard samplers with different orifices. This study was conducted to study the effect of the alternate orifice on the concentration of airborne fungal spores. Air samples were collected from July to October 2005 with two Burkard spore traps, one had the standard orifice and the second had the alternate orifice. The two spore traps were located on the roof of a building (12 m height) at the University of Tulsa, Oklahoma. Burkard daily slides were analyzed for airborne spores by light microscopy. The data from the two samplers were statistically analyzed using t-tests. The results indicated that the alternate orifice had significantly higher concentrations of Penicillium/Aspergillus-type spores and basidiospores than the standard orifice. By contrast, the standard orifice had significantly higher concentrations of Alternaria, ascospores, and other spores than the alternate orifice. The alternate orifice can be used to increase the efficiency of trapping small spores, which can be underestimated by using the standard orifice. However, additional comparison in other months of the year is recommended.  相似文献   

8.
The cave of Nerja, which is visited annually by more than half a million people, is a karstic cavity situated in the east part of the province of Malaga (southern Spain), with internal conditions of humidity and temperature that make it a space highly conducive to the development of fungus. Fungal spores are of great interest in aerobiology and allergy due to their high incidence in both outdoor and indoor environments and their widely recognized ability to cause respiratory diseases and other pathologies. In this work, we focus on the seasonal and intradiurnal study of the Aspergillus/Penicillium spore type (conidia), which is especially abundant in the atmosphere inside the cave of Nerja. This study was carried out over an uninterrupted period of 4 years (2002–2005) with the aid of a Hirst-type volumetric pollen trap (Lanzoni VPPS 2000) situated in one of the halls of the cave. The results show that the spores of Aspergillus/Penicillium type represent 48.6% of the annual spore index, June, July and August being the months with the highest rates of these spores, with an average incidence for the 4 years of 11, 63 and 15% of the annual total, respectively. However, the most interesting observation was the sudden increase in the concentration of these spores that occurred during 1 day of the year, when levels might reach nearly 300,000 spores/m3 of air as daily mean. Finally, it was concluded that these peaks were due to human activities carried out inside the cave, coinciding with celebration of the annual festival of dance and music. On the other hand, the intradiurnal study showed that the highest concentrations are reached between 1200 and 1400 hours. Although there are no standard indices related to the risk of exposure to spore concentrations, we think that the values obtained were high enough to be considered as a potential risk factor capable of producing harmful effects on human health. We therefore recommend taking the necessary measures to prevent such high increases in the spore levels inside the cave.  相似文献   

9.
A study was made of the daily content ofAlternaria andCladosporium spores in the atmosphere in Palencia city (Spain) for three consecutive years 1990–1992.Alternaria andCladosporium represented 55% of the total identified spores, presenting an annual distributional pattern of which the maximum values were reached in summer. Multiple regression analyses showed a positive correlation between minimum temperature andCladosporium spore concentrations, while forAlternaria there was a positive correlation with maximum temperature and a negative correlation with precipitation. Duncan's multiple range test among means ofAlternaria data indicated that winds coming from a northeasterly direction were associated with significantly higher concentrations the spores.  相似文献   

10.
Little research has been carried out in London concerning fungal spore prevalence yet this information may help to elucidate geographical patterns of asthma and hay fever. Although many types of spore reach peak concentrations outdoors in late-summer, the incidences in the indoor environment may be more important through the winter because of heating and poor ventilation. Daily average concentrations of fungal spores in the ambient atmosphere were monitored with a Burkard volumetric spore trap on an exposed roof in North London from autumn 1991 until the summer of 1992. Indoor spore measurements were taken in 19 homes in the vicinity through the winter months, both by direct air sampling using a portable Burkard sampler and by dust culture. Trends in the occurrence and concentrations of fungal spores indoors and outdoors were examined. Relationships between the abundance of selected allergenic fungi and features of the houses were analysed including age of dwelling, dampness, cleanliness and presence of pets.Aspergillus andPenicillium were the most frequently occurring spore types in the homes. Overall, high spore incidence was associated with dampness and dust accumulation. The outdoor spore samples revealed generally low concentrations through the winter until March when concentrations of many types includingCladosporium, Epicoccum andAlternaria increased in abundance in response to the warmer weather. Even during the late-spring and early-summer, concentrations of most fungal spores were notably below those reported for rural sites.  相似文献   

11.
Aerobiological studies are widely used to determine the fungal spectrum in the air. These studies have revealed that Aspergillus/Penicillium spores are the most abundant spores in both outdoor and indoor environments. In this study, we have presented the variations in the concentration of these spores in an indoor environment (a potato store). Aerobiological sampling was conducted during five storage period (from 2002 to 2008 year) using a Hirst-type spore trap. The maximum spore concentrations were counted during the second fortnight of January and in the months of February and March, with values higher than 6,000 spores/m3 per day. A correlation analysis between the Aspergillus/Penicillium spores and the main environmental parameters was performed; significant coefficients were obtained for spores present in the store previous days and mean temperature of the same day and previous days (P < 0.001). Moreover, a regression model was established and predicted 53% variability of the data included in the analysis. The best obtained model took into account the Aspergillus/Penicillium spore type levels of 1 previous day and the mean temperature in the preceding 2 days.  相似文献   

12.
The concentration of fungal spores in the atmosphere of Madrid was recorded and analyzed for the year 2003. Airborne spores were sampled continuously with a Hirst-type spore trap located on the roof of a building of the School of Pharmacy, at about 8 m above ground level. Correlation between the mean daily spore concentrations and meteorological variables were explored by means of Spearman’s correlation analyses. Seventy spore types were identified, of which the most numerous were Cladosporium, Aspergillaceae (conidia), Coprinus, Agaricales (basidiospores), Ustilago (teliospores) and Pleospora (ascospores). These six types of spores represented more than 70% of the total. Cladosporium represented 41% of the total fungal spores, while Ustilago spores, the concentrations of which in May and June exceeded 47% of the monthly total spore count, constituted the second most important group. Spores reached their highest concentrations in the spring months, and in the autumn, mainly in October. A␣positive significant correlation was found between airborne spore counts and temperature and relative humidity. The results provide a picture of the spectrum of airborne fungal spores present in the atmosphere of Madrid and of the `peak' periods of their presence. Future studies will provide more detailed information on the seasonal dynamics of the spores most frequently found in the air as well as on the extent to which atmospheric conditions influence their release, dispersion and sedimentation processes.  相似文献   

13.
The present study seeks to compare daily and hourly airborne pollen concentrations at eight different stations in Castilla-La Mancha (central Spain) and Extremadura (south-western Spain) and assess pollen distribution sources. Sampling stations were located 69–440 km apart in a straight line in Albacete, Toledo, Talavera de la Reina and Ciudad Real in Castilla-La Mancha, and in Badajoz, Plasencia, Santa Amalia and Zafra in Extremadura. Airborne pollen was collected using Hirst-type volumetric spore traps. Quercus was the most abundant pollen type at all stations except for Ciudad Real, where Olea pollen predominated. Comparisons of daily data between pairs of stations revealed statistically significant positive correlations in all cases for Poaceae and Olea. Comparisons of hourly data between stations indicated greater differences than daily data. Analysis of correlation coefficients and straight-line distances between stations revealed a strong negative correlation. Analysis of total airborne pollen data for the eight sampling stations suggests that airborne pollen concentrations decrease from west to east and from south to north, partly reflecting dominant wind patterns. A clear correlation was observed between airborne pollen concentrations and the surface area covered by olive crops in a 50 km radius around the sampling stations.  相似文献   

14.
Aerobiological monitoring enables the definition of seasonal fungal spore concentrations and also intradiurnal time when the highest concentrations of spores could cause or increase allergy symptoms. These data are useful to estimate symptoms of disease, duration of infection and how advanced the illness is in people suffering from fungal allergens. The aim of the study was to compare the concentrations of fungal spores (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) during dry and rainy periods and to analyse their intradiurnal changes. Average daily spore concentrations in dry and rainy periods were compared, using z test, separately for each taxon, season and for a combined 3-year period. Intradiurnal periodicity of fungal spore concentrations was analysed on the basis of three complementary diagrams. These spore concentrations were presented using three curves for all, dry and rainy days in 1997–1999 (April–November). The spore percentage in particular hours was normalized in relation to the daily spore sum accepted as 100%. Two further diagrams enabled the more precise analysis of the highest concentrations in dry days. Daily Botrytis and Cladosporium spore concentrations did not show significant differences between dry and rainy periods. In the case of Didymella and Ganoderma spore concentrations, there were no significant differences between both weather types in the single years, although there was a significant difference when a 3-year period was considered. The differences between daily concentrations of Alternaria spores in dry and rainy periods occurred in 1997 and in a 3-year period. Intradiurnal periodicity of spore concentrations was different for ‘dry’ and ‘wet’ fungal spores. Dry spores are released from the spore-producing parts of the fungus under conditions of decreasing humidity and increasing airflow. Examples of dry spores are those from Alternaria, Cladosporium and Botrytis. Wet spores, such as those from many Ascomycetes (Didymella) and Basidiomycetes (Ganoderma), are released into the atmosphere by processes related to humidity conditions or rain. The highest concentrations of ‘dry’ spores were observed early in the afternoon, while highest values of ‘wet’ spore concentrations occurred in the predawn hours. Statistically non-significant differences between daily spore concentrations in dry and rainy periods of single seasons were found except for Alternaria. Statistically significant differences could occur when the studied period was longer than one season (Alternaria, Didymella, Ganoderma). The highest concentrations of Alternaria, Botrytis and Cladosporium spores were recorded at noon and early in the afternoon. Concentrations of Didymella and Ganoderma spores were highest in the predawn hours.  相似文献   

15.
Fungal spores are among the most commonly encountered airborne biological particles, and it is widely proved that they represent a potential source of allergens involved in rhinitis and asthma. A change in temperature may influence the colonisation and growth of fungi directly through the physiology of individual organisms, or indirectly through physiological effects on their host plants or substrates and any competitors or enemies. In order to detect and monitor the evolution of the spore counts, air sampling was carried out using standard equipment (Hirst-type volumetric traps) and an identical method in several stations across France. Cladosporium has been here emphasised because of its very large contribution to the total fungal spectrum. Moreover, this taxon is of particular clinical importance because it possesses a high allergenic potential. The data from the oldest traps (Aix-en-Provence, Bordeaux, Lyon, Paris and Toulouse) were analysed on an annual base. Located at different latitudes and in different climatic areas, these five cities showed fundamentally different trends for the concentrations of Cladosporium spores: downward trend at the southernmost locations and upward trend at the other locations, whereas temperature was everywhere continuously rising over the study period. However, longer data sets are needed to be able to draw more definitive conclusions about quantitative trends in airborne fungal spore concentrations.  相似文献   

16.
Aspergillus/Penicillium spore concentrations have been monitored in Derby since 1970 using a volumetric spore trap, with full year data from 1991. In addition a short comparative study with the indoor air was undertaken at two local houses in 1994 and 1996. Aspergillus/Penicillium spores were present in the Derby air throughout the year and often reached maximum monthly cumulative concentrations in the autumn, although they were occasionally the dominant spores in the winter when total spore concentrations were low. Very high daily concentrations could occur at any time of year with a count of over 5000 recorded. Peak days in the autumn and winter of 2002–2003 were examined on a two hourly basis showing higher concentrations in the middle of the day. There was a positive correlation of cumulative monthly Aspergillus/Penicillium totals with maximum temperature. Indoor data from the two houses was examined on a daily basis and compared with simultaneously sampled outdoor daily spore concentrations. The elevated Aspergillus/Penicillium spore levels found in the older of the two houses occurred on all of the days sampled. Compared to the modern house, the Aspergillus/Penicillium spore concentrations in the old house represented a much higher percentage of the total spore count than in the modern one. The correlation between outdoor Aspergillus/Penicilliumspore concentrations and the indoor air of the old house was 0.62, whereas in the modern house it was 0.31. Peak hourly samples of Aspergillus/Penicillium spore counts occurred at times of greatest activity.  相似文献   

17.
The investigation into airborne fungal spore concentrations was conducted in Szczecin (Poland) between 2004 and 2009. The objective of the studies was to determine a seasonal variation in concentrations of amerospores on the basis of meteorological parameters. The presence of spores in Szczecin was recorded using a volumetric method. Fungal spores were present in the air in high numbers in late summer and early autumn. The highest concentrations were noted in September, October and November. The peak period was recorded in August, September, October and November. The highest annual number of spores occurred in 2005 and 2007 and the lowest in 2006. High values of daily concentration of amerospores occurred during the afternoon and late at night. In 2005 and 2007 the late-night maximum was overdue about 1 or 2 h. For daily values of dew point temperature and relative humidity, the coefficients were positive, significant for p = 0.001 and ranged from 0.342 to 0.258. The average wind speed was positively correlated for p = 0.01 and the coefficient was 0.291. The similar relations were noted for hourly values of spore concentrations for p = 0.05, p = 0.01 and p = 0.001. For these spore types, the dew point temperature and relative humidity appeared to be the most influential factor.  相似文献   

18.
Wu B  Hogetsu T  Isobe K  Ishii R 《Mycorrhiza》2007,17(6):495-506
Community structure of arbuscular mycorrhizal fungi (AMF), evaluated as spore samples and mycorrhizal roots of four herbaceous plant species, was investigated at different altitudes in a primary successional volcanic desert on Mount Fuji using molecular methods (fragment and sequence analysis of the large ribosomal subunit RNA gene). In total, 17 different AMF clades were identified, and most were members of the Glomaceae, Acaulosporaceae, and Gigasporaceae. The AMF community structures detected by spore sampling were inconsistent with those from plant roots. Of all AMF clades, six (35.3%) were detected only on the basis of spores, six (35.3%) only in roots, and five corresponded to both spores and roots (29.4%). Although an Acaulospora species was the most dominant among spores (67.1%), it accounted for only 6.8% in root samples. A species analysis of AMF communities at different altitudes demonstrated that AMF species diversity increased as altitude decreased and that the species enrichment at lower altitudes resulted from the addition of new species rather than species replacement. The inconsistencies in the species composition of spore communities with those in roots and the change in species diversity with altitude are discussed.  相似文献   

19.
I. Kasprzyk  M. Worek 《Aerobiologia》2006,22(3):169-176
The concentrations of airborne fungal spores were measured during 2001–2002 in two sites in Poland—one in the city and the other in the countryside. The sites differed in habitat characteristics, such as urbanisation level, vegetation and microclimate. The aim of the study was to determine if, and in which way, land use type would affect spore occurrence. The volumetric method was used, and ten easily identifiable spore types were sampled and anyalysed: Alternaria, Botrytis, Cladosporium, Epiccocum, Ganoderma, Pithomyces, Polythrincium, Stemphylium, Torula and Drechslera. The season of spore occurrence was determined using the 90% method. The fungal spores studied were very frequent in the air (in most instances at a frequency higher than 50%). The most common spores were those of Cladosporium, with a frequency range of 83.1–90.5%. In both years the proportion of Cladosporium spores was statistically significantly higher in the city. In both 2001 and 2002 the total seasonal sum of all the spores was higher in the countryside than in the city as was the Seasonal Fungal Index (SFI) values and average concentrations of Botrytis, Ganoderma and Torula. These latter three genera are usually represented as pathogens of plants. The mean spore concentrations of most taxa were significantly higher in the rural environment. Correlation coefficients between daily concentrations at both sites for most of the taxa studied were significant, but with lower correlation values between variables. Such results indicate that the values from the sites are weakly interdependent. The study confirms that land use type may very likely have an impact on the course of spore occurrence, the mean daily concentrations of spores as well as SFI values.  相似文献   

20.
 The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October–December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = –0.35; central, r = –0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200–0400, ∼ 1400 and 2000–2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2–4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The analysis of maximum hourly concentrations of Cladosporium and Alternaria spores during 1 month of the dry season (February), and another month of the wet season (September) showed significant differences between the two study areas. Environmental factors and sources (green areas) affected diurnal changes in conidial concentration in the southern area (urbanization index, UI, 0.25), but not in the central area (UI 0.97). In general, spore concentrations were greatest in the southern area when relative humidities were low, and temperatures and wind velocities were high. It was difficult to establish effects of climatic factors on the spore concentration in the city centre. This probably results from the large amounts of air pollution, the heat island phenomenon, and from the distant origin of trapped conidia obviating aerial transport. Nevertheless, the seasonal and diurnal distributions of conidia found were similar to those reported for other tropical regions of the world. Received: 13 August 1996 / Accepted: 4 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号