首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The pollen wall of Canna generalis Bailey is exceptionally thick, but only a minor part of it contains detectable amounts of sporopollenin. The sporopollenin is in isolated spinules at the exine surface and in the intine near the plasma membrane. There is no sporopollenin in the > 10 μ thick channeled region between spinules and intine. We suggest that the entire pollen wall of C. generalis is similar to the thick intine and thin exine typical for germinal apertures in many pollen grain types. Considered functionally, the Canna pollen wall may offer an infinite number of sites for pollen tube initiation and would differ significantly from grains that are inaperturate in the sense of an exine lacking definite germinal apertures.  相似文献   

2.
Land plants have evolved aliphatic biopolymers that protect their cell surfaces against dehydration, pathogens, and chemical and physical damage. In flowering plants, a critical event during pollen maturation is the formation of the pollen surface structure. The pollen wall consists essentially of the microspore-derived intine and the sporophyte-derived exine. The major component of the exine is termed sporopollenin, a complex biopolymer. The chemical composition of sporopollenin remains poorlycharacterized because it is extremely resistant to chemical and biological degradation procedures. Recent characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated that the sporopollenin polymer consists of phenolic and fatty acid-derived constituents that are covalently coupled by ether and ester linkages. This review illuminates the outlines of a biosynthetic pathway involved in generating monomer constituents of the sporopollenin biopolymer component of the pollen wall.  相似文献   

3.
BACKGROUND AND AIMS: Water adhesion forces, water absorption capacity and permeability of the pine exine were investigated to consider a possible function of sporopollenin coatings in the control of water transport. METHODS: The experiments were carried out with sporopollenin capsules obtained from pine pollen consisting of an empty central capsule and two sacci. Changes in the concentration of excluded dextran molecules in the medium were analysed to quantify water absorption by purified exine fragments and the osmotic volume flow out of the intact central capsule. KEY RESULTS: The contact angle of sporopollenin to water is higher than the one to ethanol and lower than the one to n-heptane. The water-filled pore space in pine sporopollenin amounts to only 20.6 % of the matrix volume. A monosaccharide was excluded from 15 % and a trisaccharide from about 38 % of this space. Shrinkage of the central capsule induced by permeable osmotica was transient, whereas that induced by sodium polyacrylate (2100 g mol(-1)) was stable. Values obtained for the hydraulic conductance L(P) of the exine (0.39-0.48 microm s(-1) MPa(-1)) are comparable in size to those of biomembranes. Sodium sulfate solutions induced a significant osmotic flow through the exine (reflection coefficient at least 0.6). The exine around the central capsule can be ruptured by equilibration of its lumen with a concentrated electrolyte solution and subsequent transfer to water. The denatured protoplast along with the intact intine was ejected when pollen grains were subjected to this osmotic shock treatment. CONCLUSIONS: The pine exine is easily wetted with water and does not represent a significant barrier to water exchange either liquid or gaseous. Through osmotic burst, it can be separated from the intine. The effect of salts and small solute molecules on water fluxes may be functionally significant for rehydration upon pollination.  相似文献   

4.
F. B. Sampson 《Grana》2013,52(2):61-73
Hedycarya has pollen in permanent tetrads. H. arborea, the New Zealand species, differs from others studied, in having a cap of more or less imperforate tectum at the distal pole of each grain. This polar region is not an aperture and the pollen tube emerges through a papillose part of the external wall of each grain. Transmission electron microscope studies of immature and mature tetrads reveal a most unusual exine structure. "Radial processes" develop by accumulation of sporopollenin around unit membranes of similar dimensions to the plasmalemma, and extend from just beyond the intine to the tectal region. The entire exine is considered ectexinous. During development, members of a tetrad are interconnected by cytoplasmic channels and the synchronous division into generative and vegetative nuclei within each tetrad is attributed to their presence. The channels become closed by the deposition of intine. Comparisons are made with exine structure in some other members of the woody Ranales and with some other plants with tetrad pollen.  相似文献   

5.
Tapeinochilos pollen, like that of most angiosperms, is spared by the standard acetolysis treatment because the sporoderm is impregnated with sporopollenin. This genus and its allies in the Costaceae are the only taxa in the eight families of Zingiberales that have acetolysis-resistant pollen. The sporoderm in most of the order is characterized by exine reduced to a wispy coating or layer with delicately anchored spinules and a highly elaborated intine. Ultrastructural studies on the pollen of Tapeinochilos reveal a pattern of wall development that is significantly different from the generalized angiosperm type; namely, there are no columellae, nor is there any significant accretion of sporopollenin following the dissolution of callose and release of microspores. The primexine is composed of rodlets which build up solidly between apertures and become packed into layers to form a thick, stratified exinous covering. No secondary exine develops during the free spore period and the juvenile primexine persists as the protective coat on the mature pollen grain. This pattern of pollen development is viewed as an example of neoteny in which a juvenile or immature character is retained in adulthood.  相似文献   

6.
Pollen wall development in Sorghum bicolor is morphologically and temporally paralleled by the formation of a prominent orbicular wall on the inner tangential surface of the tapetum. In the late tetrad stage, a thin, nearly uniform primexine forms around each microspore (except at the pore site) beneath the intact callose; concurrently, small spherical bodies (pro-orbicules) appear between the undulate tapetal plasmalemma and the disappearing tapetal primary wall. Within the primexine, differentially staining loci appear, which only develop into young bacula as the callose disappears. Thus, microspore walls are devoid of a visible exine pattern when released from tetrads. Afterwards, sporopollenin accumulates simultaneously on the primexine and bacula, forming the exine, and on the pro-orbicules, forming orbicules. Channels develop in the tectum and nexine, and both layers thicken to complete the microspore exine. Channeled sporopollenin also accumulates on the orbicules. A prominent sporopollenin reticulum interconnects the individual orbicules to produce an orbicular wall; this wall persists even after the tapetal protoplasts degenerate and after anthesis. While the pollen grains become engorged with reserves, a thick intine, containing conspicuous cytoplasmic channels, forms beneath the exine. Fibrous material collects beneath the orbicular wall. The parallel development and morphological similarities between the tapetal and pollen walls are discussed.  相似文献   

7.
M Grote  H G Fromme 《Histochemistry》1984,81(2):171-176
In allergenic birch pollen grains, highly watersoluble surface substances were precipitated by the cationic detergent cetylpyridinium chloride (CPC) during aqueous fixation. After processing the pollen for electron microscopy, ultrathin sections of pollen grains were subjected to the periodic acid - thiocarbohydrazide - silver proteinate (PA-TCH-SP) procedure according to Thiery (1967) for the detection of vicinal glycol groups. It was found that the material precipitated by CPC on the surface and within the exine cavities of the pollen wall strongly reacted with the PA-TCH-SP reagent thus indicating the presence of polysaccharides on the surface of birch pollen grains. In samples which had not been treated with the cationic detergent, PA-TCH-SP reactivity was reduced to thin linings on the surface and within the exine cavities. In both cases the exine proper did not stain whereas the intine showed moderate staining. Within the aperture region of the intine, PA-TCH-SP reactivity is preferably associated with fibrillar or reticular structures. The results are discussed with special reference to biochemical findings on allergenic birch pollen proteins.  相似文献   

8.
Summary In allergenic birch pollen grains, highly watersoluble surface substances were precipitated by the cationic detergent cetylpyridinium chloride (CPC) during aqueous fixation. After processing the pollen for electron microscopy, ultrathin sections of pollen grains were subjected to the periodic acid — thiocarbohydrazide — silver proteinate (PA-TCH-SP) procedure according to Thiery (1967) for the detection of vicinal glycol groups. It was found that the material precipitated by CPC on the surface and within the exine cavities of the pollen wall strongly reacted with the PA-TCH-SP reagent thus indicating the presence of polysaccharides on the surface of birch pollen grains. In samples which had not been treated with the cationic detergent, PA-TCH-SP reactivity was reduced to thin linings on the surface and within the exine cavities. In both cases the exine proper did not stain whereas the intine showed moderate staining. Within the aperture region of the intine, PA-TCH-SP reactivity is preferably associated with fibrillar or reticular structures. The results are discussed with special reference to biochemical findings on allergenic birch pollen proteins.  相似文献   

9.
Exines of certain Gymnosperms spontaneously separate from the intine during the process of hydration preceding pollen germination. Exines of pollen of Calocedrus decurrens, Chamaecyparis lawsoniana, Juniperus occidentalis, Sequoia sempervirens, and Pseudotsuga menziesii were isolated from hydrated, autoclaved pollen. Free exines were purified by centrifugation on a discontinuous sucrose gradient of densities 1.14 to 1.27 g/ml. The outer intine dissolved on autoclaving. This method may be applicable to a wide range of genera. Purified exines are of potential use in chemical analyses of sporopollenin and in production of antibodies to exine.  相似文献   

10.
Light and electron microscope observations characterized the layers that comprise Vigna vexillata L. pollen walls, and identified the timing of their development. Exine sculpturings form an unusually coarse ektexinous reticulum. The structure of the ektexine is granular; this differs from the columellate/tectate type of structure typical of most angiosperm pollen. The ektexine overlies a homogeneous-to-lamellar, electron-dense endexine, which in turn surrounds a thick, microfibrillar intine. Pollen grains are triporate and operculate, with Zwischenkörper and thickened intine underlying the apertures. The ektexine forms during the tetrad period of microspore development, the endexine and Zwischenkörper during the free microspore stage, and the intine during the bicelled (pollen) stage. Coarsely reticulate exine sculpturings and the granular structure of the patterned exine wall of the pollen grains are features that make this species suitable for detailed studies of pollen wall pattern formation.  相似文献   

11.
Hesse M 《Protoplasma》2006,228(1-3):145-149
Summary. In the family Araceae, the members of all subfamilies except Aroideae follow the conventional mode of exine formation pattern, which conforms with the textbook view of sporoderm stratification and chemistry (sporopollenin ektexine formed before the endexine). Only members of the subfamily Aroideae show a quite uncommon mode of exine formation pattern, with an endexine formed prior to the nonsporopollenin, polysaccharidic outer exine layer. The intine is formed simultaneously with this non-sporopollenin layer. From the differing timetable and especially from the different origin it is concluded that this outer exine layer is not homologous to the angiosperm ektexine. The fundamental question, why members of the Aroideae lack an elaborated sporopollenin ektexine, is discussed in terms of functionality of the nonsporopollenin outer exine layer. It seems that a major change in aroid evolution took place at the point when the family phylogenetically and ecologically shifted from bisexual (most subfamilies) to unisexual flowers (Aroideae only). The hypothesis is that ephemeral spathes and the absence of sporopollenin are the consequence of an adaptive syndrome for a short pollination time window in many members of the Aroideae, with short-lived pollen, an energetically not costly pollen wall, rapid germination of pollen tube, and brief receptivity of stigma. Correspondence and reprints: Institute of Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria.  相似文献   

12.
The pollen wall of tetrads located in different positions of a mature pollinium of Cymbidium goeringii was examined with the electron microscope, and the compositions of wall materials were also tested with different histochemical methods. In all tetrads of a pollinium, the pollen wall can be distingished into an exine and an intine, but the exine may be varied greatly according to the tetrad position in a pollenium. The part of the pollen wall (the outer wall) of the external tetrads, lying close, to the tapetum, is composed of two layers, i.e. the exine, and the intine. Theexine consists of tectum, granulate ectexine and endexine, without foot layer. The intine is cellulose in nature. In the outer wall between different groups of: tetrads and in the inner wall within an individual tetrad, the structure of ectexine becomes simple and the deposition of sporopollenin is roduced The degree of reduction of ectexine nicreases from the outer to inner tetrads in several external layers of a pollinium, and even the internal tetrads have a reduced ectexine or lack of it. The present study also demonstrates that the mechanism of pollen aggregation into a pollinium is built on a combined effect of the following features: (1) connected bridges formed' by intine between two pollens within a tetrad, (2) formation of cytoplasmic channels between two pollens within a tetrad, (3) incomplete cell wall formation within a tetrad, (4) little size of tetrads and compact arrangement of mature tetrads and (5) a sticky viscin material surrounded on the outside of a pollinium.  相似文献   

13.
水稻成熟花药和花粉的结构和组织化学研究   总被引:3,自引:2,他引:3  
用乙二醇甲基丙烯酸脂(简称GMA)和环氧树脂Epon812包埋的薄切片方法对水稻成熟花药和花粉的结构进行了观察,并对各种结构的性质和细胞中的后含物做了细胞化学的分析.对成熟花药的绒毡层膜及乌氏体的研究采用了分离技术,做了显微和超微观察.证明水稻成熟花药壁和花粉除具一般禾本科植物特征外,还揭示了花药壁表皮上可能有硅质,药壁表皮细胞内含有脂类颗粒,药室内壁具纤维素质的纤维状加厚;发现花粉粒中除了贮存有大量淀粉颗粒外,还含有脂类,成熟花粉中营养核与两个精细胞及两个精细胞间联系紧密;并讨论了薄切片的优越性,绒毡层膜的意义及其上细胞印迹的来源.  相似文献   

14.
Effects of ovular secretions on pollen grains were examined in Pseudotsuga menziesii. The exine is cast off in the micropylar canal. A membranelike structure covers parts of pollen grains and appears to protect them. The outer intine consists of fibrous materials, but it also shows a thicker filamentous appearance in some ovules during pollen elongation. The inner intine is electron-dense. Its fibrous nature is occasionally visible. Dissolution of the outer intine varies in amount and manner in ovules from different trees. The plasma membrane near the pollen wall alternatively appears normal and distorted. These different morphologies of the outer intine and of the plasma membrane are considered to result from secretions from the ovule. The outer intine may contain electron-dense globules that are formed in the tube cell and traverse the inner intine. Pollen tube formation appears to be triggered by a secretion from the ovule. Cross-pollinated grains are less distorted compared with self-pollinated grains.  相似文献   

15.
The proexine that forms within the callosic envelope before the end of the microspore tetrad period is thick (about 1 μm) and exceptionally complex. It has components equatable with tectum, columellae, and a nexine that includes lamellar zones. All these components persist in the exine although late in development they become difficult to recognize because this exine is reduced in thickness, apparently by stretching, to a maximum of 0.2 μm. Strelitzia is an example of an exine template, with receptors for sporopollenin, that is not maintained during development. The Strelitzia microspore surface changes from an exine like that on an interaperture sector to the channeled intinelike system common for the apertures of pollen grains. The exine on sterile grains gives what may be a rare view of a stabilized immature exine. The mature exine on viable pollen grains resembles this early exine only in the most impressionistic way. Tapetal cells go through at least one cycle of hyperactivity, dedifferentiation, mitosis, and then again hyperactivity before they finally decline.  相似文献   

16.
Summary The wall ofPinus sylvestris pollen and pollen tubes was studied by electron microscopy after both rapid-freeze fixation and freeze-substitution (RF-FS) and chemical fixation. Fluorescent probes and antibodies (JIM7 and JIM5) were used to study the distribution of esterified pectin, acidic pectin and callose. The wall texture was studied on shadow-casted whole mounts of pollen tubes after extraction of the wall matrix. The results were compared to current data of angiosperms. TheP. sylvestris pollen wall consists of a sculptured and a nonsculptured exine. The intine consists of a striated outer layer, that stretches partly over the pollen tube wall at the germination side, and a striated inner layer, which is continuous with the pollen tube wall and is likely to be partly deposited after germination. Variable amounts of callose are present in the entire intine. No esterified pectin is detected in the intine and acidic pectin is present in the outer intine layer only. The wall of the antheridial cell contains callose, but no pectin is detectable. The wall between antheridial and tube cell contains numerous plasmodesmata and is bordered by coated pits, indicating intensive communication with the tube cell. Callose and esterified pectin are present in the tip and the younger parts of the pollen tubes, but both ultimately disappear from the tube. Sometimes traces in the form of bands remain present. No acidic pectin is detected in either tip or tube. The wall of the pollen tube tip has a homogenous appearance, but gradually attains a fibrillar character at aging, perhaps because of the disappearance of callose and pectin. No secondary wall formation or callose lining can be seen wilh the electron microscope. The densily of the cellulose microfibrils (CMF) is much lower in the tip than in the tube. Both show CMF in all but axial and nontransverse orientations. In conclusion,P. sylvestris and angiosperm pollen tubes share the presence of esterified pectin in the tip, the oblique orientations of the CMF, and the gradual differentiation of the pollen tube wall, indicating a possible relation to tip growth. The presence of acidic pectin and the deposition of a secondary-wall or callose layer in angiosperms but not inP. sylvestris indicales that these characteristics are not related to tip growth, but probably represent adaptations to the fast and intrastylar growth of angiosperms.Abbreviations CMF cellulose microfibrils - II inner intine - NE nonsculptured exine - OI outer intine - RF-FS rapid-freeze fixation freeze-substitution - SE sculptured exine - SER smooth endoplasmic reliculum - SV secretory vesicles  相似文献   

17.
A procedure has been devised for isolation and recovery of exine that is generally applicable to pollens and spores from a range of common species. Particles are suspended in an aqueous solution of 4-O-methylmorphine N-oxide and cyclohexylamine which swells them and loosens the exine layer. Gentle pressure in a teflon/glass tissue grinder releases protoplasts from exine and subsequent treatment with a mixture of cellulase and pectinase destroys attachments between intine and exine layers. The suspension is placed on a NaCl/Percoll step gradient to remove protoplasts and then the exine is cleanly separated from other cellular fragments on a step gradient of CsCl. The entire procedure can be accomplished at room temperature which greatly reduces possibility of chemical or physical modification of the exine. Moreover, the method is readily scaled up to production of exine in gram amounts which allows future study of the structural properties of its major biopolymer, sporopollenin.  相似文献   

18.
This last portion of our developmental study ofPinus sylvestris L. pollen grains extends from just prior to the first microspore mitosis to the microsporangial dehiscence preparatory to pollen shedding. In nine years of collecting each day the duration of the above period was 7 to 11 days. Tapetal cells extended into the loculus and embraced microspores during the initial part of the above period. Thereafter tapetal cells receded, became parallel to parietal cells and so imbricated that there appeared to be two or three layers of tapetal cells. Tapetal cells were present up to the day before pollen shedding, but only rER and some mitochondria appeared to be in good condition at that time. A callosic layer (outer intine) was initiated under the endexine before microspore mitosis. After the first mitosis the first prothallial cell migrated to the proximal wall and was covered on the side next to the pollen cytoplasm by a thin wall joining the thick outer intine. There are plasmodesmata between pollen cytoplasm and the prothallial cell. After the second mitosis the second prothallial cell became enveloped by the outer intine. The inner intine appears after formation of the two prothallial cells but before the third mitosis. During this two-prothallial cell period before the third mitosis, plastids had large and complex fibrillar assemblies shown to be modified starch grains. After the third mitosis plastids of the pollen cytoplasm contained starch and the generative cell (antheridial initial), the product of that mitosis, is enveloped by the inner intine. On the day of pollen shedding cells are removed from the microsporangial wall by what appears to be focal autolysis. The tapetal and endothecial cells for 10–15 µm on each side of the dehiscence slit are completely removed. One or more epidermal cells are lysed, but both a thin cuticle and the very thin sporopollenin-containing peritapetal membrane remain attached to the undamaged epidermal cells bordering the dehiscence slit. Our study terminates on the day of pollen shedding with mature pollen still within the open microsporangium. At that time there is no longer a clear morphological distinction between the outer and inner intine but, judging by stain reactions, there is a chemical difference. The exine of shed pollen grains was found to be covered by small spinules on the inner surface of alveoli. These had the same spacing as the Sporopollenin Acceptor Particles (SAPs) associated with exine initiation and growth.  相似文献   

19.
In the present study, microsporogenesis, microgametogenesis and pollen wall ontogeny in Campsis radicans (L.) Seem. were studied from sporogenous cell stage to mature pollen using transmission electron microscopy. To observe the ultrastructural changes that occur in sporogenous cells, microspores and pollen through progressive developmental stages, anthers at different stages of development were fixed and embedded in Araldite. Microspore and pollen development in C. radicans follows the basic scheme in angiosperms. Microsporocytes secrete callose wall before meiotic division. Meiocytes undergo meiosis and simultaneous cytokinesis which result in the formation of tetrads mostly with a tetrahedral arrangement. After the development of free and vacuolated microspores, respectively, first mitotic division occurs and two-celled pollen grain is produced. Pollen grains are shed from the anther at two-celled stage. Pollen wall formation in C. radicans starts at tetrad stage by the formation of exine template called primexine. By the accumulation of electron dense material, produced by microspore, in the special places of the primexine, first of all protectum then columellae of exine elements are formed on the reticulate-patterned plasma membrane. After free microspore stage, exine development is completed by the addition of sporopollenin from tapetum. Formation of intine layer of pollen wall starts at the late vacuolated stage of pollen development and continue through the bicellular pollen stage.  相似文献   

20.
云南松小孢子发生的超微结构研究   总被引:3,自引:0,他引:3  
云南松(Pinus yunnanensis Fr.)小孢子囊发育早期,原生质体发生收缩、同时形成胼胝质壁。小孢子母细胞减数分裂前互相分离,并被胼胝质壁包围。在壁上有约0.2微米的小孔。四分体小孢子形成后,核被膜及高尔基体显得非常地活跃,他们可能与外壁的沉积有关。这个现象在早期四分体阶段出现。内壁的形成是在自由小孢子时期,开始高尔基体和核被膜仍较活跃,但随之下降。内质网和线粒体增多,许多来自内质网的泡囊通过质膜被排放到内壁中去。乌氏体与花粉外壁之间观察到了孢粉素带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号