首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the daily content ofAlternaria andCladosporium spores in the atmosphere in Palencia city (Spain) for three consecutive years 1990–1992.Alternaria andCladosporium represented 55% of the total identified spores, presenting an annual distributional pattern of which the maximum values were reached in summer. Multiple regression analyses showed a positive correlation between minimum temperature andCladosporium spore concentrations, while forAlternaria there was a positive correlation with maximum temperature and a negative correlation with precipitation. Duncan's multiple range test among means ofAlternaria data indicated that winds coming from a northeasterly direction were associated with significantly higher concentrations the spores.  相似文献   

2.
In the Mediterranean area, Urticaceae pollen, together with the pollen of olive and grasses, are the aeroallergens with the highest incidence in the population. From October 1991 to September 1993, with the aid of a Burkard spore-trap, we carried out a study on the Urticaceae pollen content in the atmosphere of Málaga, a seaside resort situated in the Costa del Sol (southern Spain). In Málaga, the Urticaceae pollen season is very long and their pollen grains are detected throughout the year. However, peaks were recorded in March and April and the variables most influencing concentration were maximum air temperature, sunshine hours and relative humidity. Diurnal patterns show that peaks occur generally from 10:00 h to 16:00 h when the temperature reaches its highest values.  相似文献   

3.
In the Mediterranean area, Urticaceae pollen, together with the pollen of olive and grasses, are the aeroallergens with the highest incidence in the population. From October 1991 to September 1993, with the aid of a Burkard spore-trap, we carried out a study on the Urticaceae pollen content in the atmosphere of Málaga, a seaside resort situated in the Costa del Sol (southern Spain). In Málaga, the Urticaceae pollen season is very long and their pollen grains are detected throughout the year. However, peaks were recorded in March and April and the variables most influencing concentration were maximum air temperature, sunshine hours and relative humidity. Diurnal patterns show that peaks occur generally from 10:00 h to 16:00 h when the temperature reaches its highest values.  相似文献   

4.
Airborne pollen counts are mainly determined using a volumetric suction sampler based on the impact principle, that is, a Hirst-type spore trap. As a consequence of their volumetric nature, samplers detect pollen from a wide area, and therefore, a single sampler is frequently used to acquire information on airborne pollen counts for the whole city. The main goal of the present study was to compare airborne pollen counts at two sites located at opposite ends (south-west vs. north-east) of the southern Spanish city of Córdoba, to assess the advantages and disadvantages of using more than one sampler in the city. Also, a comparative study was carried out using two samplers at the same site, in order to confirm the efficiency of the samplers. Results revealed that data from one volumetric sampler—located within a city of medium size with uniform topography and vegetation conditions—are sufficient to establish monitoring of the main airborne pollen types, the pollen seasons involved and the timing of peak counts. For clinical studies, however, data on pollen counts in specific areas of the city may be of value, since pollen intensity may vary from one district to another, mainly in the case of ornamental plants with a local distribution inside the city. Comparison of data obtained by the two samplers running at the same site indicated that potential inter-site differences could not be attributed to differences in sampler efficiency.  相似文献   

5.
The first results are presented of an aerobiological analysis of the atmosphere of the town of Almería, carried out between November 1995 and October 1996. A Lanzoni volumetric spore trap was used for sample collection. The composition and seasonal evolution of the pollen spectrum were determined over a 1-year period in relation to the vegetation and climatic conditions of the study area. Twenty-six pollen types were identified as accounting for >0.05% of the total pollen collected. The main sources of airborne pollen were Palmae (17.76%),Olea (16.10%), Chenopodiaceae/Amaranthaceae (13.99%), Urticaceae (10.18%) and Poaceae (8.64%). The annual pollen variation presented a period of maximum emission from March to June, with a subsequent, less intensive period from August to November. The minimum pollen values were obtained from December to February. The highest concentrations occurred in May, which was also the month which presented the highest pollen diversity, whereas the lowest values were observed in January.  相似文献   

6.
Pollen data from the atmosphere of Vigo, NW Spain was collected using a Hirst type pollen trap over a seven-year period (1995–2001). A total of 56 different pollen types were identified, among which Urticaceae, Poaceae, Betula and Quercus represent the greatest risk for people suffering from allergic rhinitis (hay fever) or other allergic diseases. Although in the atmosphere of Vigo the presence of allergenic pollen is constant throughout the year, the months of March and April account for 40% of the annual total pollen count. Two main risk periods have been identified for asthma and allergies: (1) March – April, and (2) June – July, the latter is of greater importance due to high concentrations of Poaceae pollen. Correlation analysis with meteorological parameters demonstrates that rainfall, relative humidity, maximum temperature, sun hours and north-easterly winds are the main factors influencing the average daily pollen concentrations in the atmosphere.  相似文献   

7.
The problem of developing a 2-week-on ahead forecast of atmospheric cypress pollen levels is tackled in this paper by developing a principal component multiple regression model involving several climatic variables. The efficacy of the proposed model is validated by means of an application to real data of Cupressaceae pollen concentration in the city of Granada (southeast of Spain). The model was applied to data from 11 consecutive years (1995–2005), with 2006 being used to validate the forecasts. Based on the work of different authors, factors as temperature, humidity, hours of sun and wind speed were incorporated in the model. This methodology explains approximately 75–80% of the variability in the airborne Cupressaceae pollen concentration.  相似文献   

8.
Atmospheric pollen was collected with a Burkard spore trap in Ankara, Turkey, from January 1990 to January 1993. A total of 135.787 grains/m3 belonging to 47 taxa were observed. The local pollen season started in February in 1990 and 1991 and in March in 1992. Relatively low pollen concentrations were recorded in 1990 and 1992, probably because of precipitation and low wind speed in the spring. A relatively high pollen concentration was recorded in 1991 which could be caused by higher wind speed in the spring and more precipitation during the winter. Cupressaceae/Taxaceae, Pinaceae, Gramineae, Betula, Moraceae, Platanus, Populus, Acer, Quercus, Chenopodiaceae/Amaranthaceae, Plantago, Rumex are found to be the dominant pollen types in the atmosphere in Ankara. The pollen composition generally reflects the vegetation of gardens, parks and roadsides, while the natural steppe vegetation of the area around Ankara is not properly represented.  相似文献   

9.
To establish the trends in the period 1995–2013 of the annual fungal spore index of 20 taxa in 8 aerobiological sites of Catalonia, located in 4 phytoclimates, we use the nonparametric Spearman’s Rho and Mann–Kendall tests; when significant, we calculate the magnitude of the change applying the Theil–Sen estimator. We analyze whether the proportional annual change is significantly different from zero, according to phytoclimate, station, and spore taxon, with the Wilcoxon–Mann–Whitney test. Cladosporium, Coprinaceae and Agrocybe are the most prevalent taxa. The proportional annual change analysis shows that 12 taxa present significant increasing trends and 2 decreasing, that the Fresh-Continental Oriental-Humid phytoclimate and Agrocybe show the highest significant increase, while Roquetes-Tortosa (Fresh-Tethyc-Semiarid phytoclimate) and Torula the lowest. The greater significant decreasing proportional annual change corresponds to DrechsleraHelminthosporium and the lesser to Curvularia, and there are no results per phytoclimate and locality. The diversity of characteristics of the sites studied brings the opportunity to evaluate the variability of the fungal values and the magnitude of their change across the study period as depending on the intensity of the land use (urbanization versus agriculture) and the distance to the sea (inland versus littoral), but the effect of the change of the meteorological patterns in the recent years is not negligible. The increasing temperatures and precipitation instability established as effects of the climate change in Catalonia in the last 50 years could be stimulating the sporulation in mountain areas and affecting it in the southern Catalan littoral, thus affecting spore counts.  相似文献   

10.
The present study analyzes the behaviour ofAlnus andBetula pollen in the atmosphere of the town of Santiago de Compostela (N.W. Spain) from January 1993 to December 1995. The main pollination period of both taxa is identified for each sampling year, which, in the case ofAlnus, took place in January and February and, forBetula, during April.Alnus andBetula pollen are found in very high quantities in the atmosphere of Santiago de Compostela, representing 5% and 12% respectively of the total annual pollen that was counted. We studied the correlation between pollen content each year for both taxa and the main meterological parameters (average, maximum and minimum temperatures, precipitation and hours of sunshine). Finally, we analyzed the diurnal behaviour model for each taxon. ForAlnus, the maximum concentrations were found around 20:00 h, while, in the case ofBetula, the main pollen concentration took place between 15:00 h and 20:00 h in 1993 and 1994, and at 00:00 h in 1995.  相似文献   

11.
Pollen grains in the atmosphere of Bratislava were quantitatively and qualitatively analysed during an 8-year period (2002–2009) using a Burkard volumetric pollen trap. The mean annual total pollen grain count recorded during this period was 36,608, belonging to 34 higher plant taxa (22 trees and/or shrubs and 12 herbaceous species). The maximum annual total pollen grain count (50,563) was recorded in 2003 and the minimum (14,172) in 2009. The taxa contributing the highest concentration of pollen grains were Betula, Urticaceae, Cupressaceae-Taxaceae, Populus, Pinus, Poaceae and Ambrosia. During the study period, there was a remarkable increase in the number of pollen grains from February to April, with the highest daily mean pollen counts recorded in April. Total pollen concentration began to decrease markedly in May, but there was a second increase between July and August, followed by a decrease in September. The timing and length of the pollen seasons varied. Betula and Poaceae showed a rather constant 2-year fluctuating rhythm. The relationships between airborne pollen concentration and meteorological variables were assessed. Based on these results, the first pollen calendar in Slovakia has been constructed for the area of Bratislava, which provides a great deal of useful and important information.  相似文献   

12.
The objective of this investigation was to identify the overall pollen types and, more particularly, the allergenic pollen content in the investigated area and then to explore their seasonal variations. The measurement point was located in the Timi?oara city, Romania. A Lanzoni volumetric trap was used for sample collection. Duration of the pollen season of allergenic plants and respective variation in airborne pollen concentration are presented in the pollen calendar for the year 2009. Among the identified pollen of 23 types, 20 were allergenic: Taxaceae/Cupressaceae, Alnus sp., Fraxinus sp., Betula sp., Corylus sp., Carpinus sp., Salix sp., Populus sp., Ulmus sp., Juglans sp., Quercus sp., Pinaceae, Tilia, Poaceae, Urticaceae, Chenopodiaceae/Amaranthaceae, Rumex sp., Plantago sp., Artemisia sp., Ambrosia sp. These species prevail throughout almost the entire pollen season, from February–October, accounting for 87.03 % of the total pollen count. The greatest diversity of pollen types is detected in the months of spring. The summer months were characterized mostly by non-arboreal pollen types. In late summer and early autumn, Ambrosia airpollen was the most abundant in the atmosphere. The relationships between pollen concentrations and nine meteorological parameters are presented too. To analyze the correlation between pollen data and variables, the Spearman rank correlation coefficient was used. The correlation analysis of daily pollen counts and meteorological parameters showed that arboreal pollen and non-arboreal pollen counts were significantly correlated with temperature. The prevalence of pollen sensitization resulted to be very high in our patients with respiratory symptoms.  相似文献   

13.
The pollen content of eleven honey samples from ten different apiaries in the Baixa Limia – Serra do Xurés Nature Reserve and other honey commercialised by the cooperative as “Mel do Xurés” (north‐west Spain) was subjected to quantitative and qualitative melissopalynological analysis. The quantitative analysis found that ten samples belonged to Maurizio's Class III and one to Class IV. According to the qualitative analysis, four samples were classified as unifloral honey with Erica, four samples as multifloral honey with Erica pollen as the principal component and three samples as multifloral honey with Cytisus‐type pollen and Erica as the principal component pollen. The pollen spectra differ between the diverse honeys analysed, with a common denominator being Erica and Cytisus‐type pollen being abundant in all. For the rest of the samples, the pollen spectra were mainly the same, but with different relative percentages among secondary elements. Thus, either as a secondary or an important element, 91% of the honeys contained Quercus, 82% Castanea sativa Miller, 45% Rubus, 36% Cistus and 27% Lithodora prostrate (Loisel) Griseb,. In particular, we record for the first time the presence of Ribes and Ilex aquifolium L. pollen in Spanish honeys as an important minor or minor pollen component.  相似文献   

14.
This study sought to compare airborne pollen counts for a number of common herbaceous species (Plantago, Chenopodiaceae–Amaranthaceae, Rumex, and Urticaceae) in two cities with differing weather conditions, Córdoba (Southwestern Spain) and Poznan (Western Poland). Pollen seasons for these species were studied from 1995 to 2005. Aerobiological sampling was performed using a Hirst type 7-day spore trap, in accordance with the procedure developed by the European Aerobiology Network. A Spearman correlation test was used to test for correlations between meteorological parameters and daily airborne pollen counts. The Spearman correlation test and the Wilcoxon signed ranks test were also used to compare mean daily pollen counts for the two study sites. In Córdoba, the pollen season generally started around two months earlier than in Poznan, and also lasted longer. These findings were attributed to the presence of a larger number of species in Córdoba, with overlapping pollen seasons, and also to more favorable weather conditions. Trends in pollen season start dates were fairly stable over the study period, with a slight tendency to delayed onset in Córdoba and a modest advance in start date in Poznan. The pollen season end date also remained reasonably stable over the study, with only a slight tendency for the season to end earlier in Córdoba and later in Poznan. A clear trend towards declining annual pollen counts was recorded over the study period for all pollen types in both cities.  相似文献   

15.
The investigation of airborne pollen and fungalspore concentrations was carried out in Cracowbetween 1997–1999. For this study thevolumetric method has been employed (Burkard).At the same time the clinical diagnosis ofpollen allergy in 40 patients was obtained onthe basis of an interview, positive skin pricktests with pollen extracts and increasedspecific IgE level. An increase in seasonalallergy symptoms in all patients occurred fromthe middle of May to the middle of August.Eighty eight percent of the patients (35 out of40) were sensitive to Poaceae pollen and about50% of them were additionally sensitive totree and herb pollen excluding grasses. Forpatients with additional allergy to tree pollenthe seasonal symptoms started at the end ofMarch (Betula) while for patients withadditional allergy to herb pollen it wasextended to the middle of September (Artemisia).Five people out of 40 revealed positive skinreactions to Alternaria spores and anincrease in specific IgE level. Positive skinreaction to Cladosporium spores with noincrease in specific IgE level occurred in 2patients. The increase in seasonal allergysymptoms in people sensitive to Alternariaspores noted in July and August could becaused not only by these spores but also byPoaceae pollen.  相似文献   

16.
The timing of pollen appearance in the atmosphere provides a general idea of the flowering onset of plants over a wide area. Woody plants in temperate regions have evolved mechanisms to preserve cells from the risk of frost during adverse weather conditions in the period prior to flowering regulated mainly by temperature. A number of indices have been developed to quantify the rest and heat requirements of temperature, which will enable the plant to adapt to environmental conditions. However, flowering is a dynamic and complex phenomenon and it is difficult to separate individual effects of different meteorological parameters. The use of modified bioclimatic indices could be a major step forward. In this study the Alnus glutinosa flowering in four different areas in north‐western Spain in the period 1995–2003 is examined, and trends identified by means of information gathered by Hirst pollen traps. Temperature plays an important role in the maturation of reproductive organs and pollen production. Comparison with bioclimatic indices showed that temperature during the 25–55 days preceding pollen release was the main controlling factor, and that relationship between flowering time and bioclimatic indicator values differs according to local conditions. In colder areas, rest and heat temperature requirements are greater because the trees need protection over a longer period; in the Mediterranean region of north‐western Spain, the rest temperature requirement and the threshold temperature are both higher than in Eurosiberian areas. Ombrothermic, Continentality and Thermicity indices are thus useful tools for characterizing the various bioclimatic areas of north‐western Spain.  相似文献   

17.
A preliminary study to compare Poaceae pollen data and to determine possible differences in pollen productivity and/or seasonality was performed at six locations in Catalonia (Spain): Barcelona, Bellaterra, Girona, Lleida, Manresa and Tarragona over a 6-year period (1996–2001). In the study area, Poaceae pollen grains are an important cause of respiratory allergies. Being present in the atmosphere all year round, the grass pollen concentrations are especially significant between May and August. The absolute peak occurs in June, except in Lleida where the peak comes earlier, possibly due to the early flowering of particular steppe species. Even if there are differences between different years, Girona and Lleida (inland locations) usually present the highest annual grass pollen index with, on average, 2177 pollen grains per year. Barcelona and Tarragona (the coastal sites) show the lowest levels, with around 1140 grass pollen grains per year. The respective local climates are very different, and pollen grains may originate in different grass species. A decreasing trend in the Poaceae annual pollen index was found over the period of the present study.  相似文献   

18.
The northern area of Córdoba province (southern Spain) is characterised by a high spatial distribution of Quercus species. In Córdoba city, high airborne Quercus pollen counts are detected during spring despite the low presence of Quercus populations in the Guadalquivir Valley, where this city is located. This study sought to clarify and identify the potential origin of the different Quercus peaks detected in this city and chart the possible relationship between Quercus pollen curves and air-mass movements. For this purpose, an integrated study of daily and intra-diurnal Quercus pollen counts and back-trajectory analysis was performed over the March–June period of the years 2006–2008. The application of cluster techniques to back trajectory enabled the identification of six different types of air-mass movement. As a function of frequency, two different air-mass groups were identified: the main group comprised Local, Slower Northwest and Mediterranean movements, characterised by higher frequencies; a second group consisting of North, Faster Northwest and Southwest trajectories occurred less frequently over the study period. Although a significant correlation was observed between Quercus airborne pollen counts recorded in Córdoba city and the influence of the Mediterranean air-mass movements, the strongest positive correlation was found between North and Northwest air-mass movements and daily Quercus pollen counts. These results would confirm both that the major Quercus pollen sources are located at different distances north of the city and a new pollen source is also located south of the province, beyond the Guadalquivir valley, related to the arrival of Mediterranean air masses. The northern source appears to be linked to regional transport and the southern source to long-range transport.  相似文献   

19.
The biomass and population dynamics of crustacean zooplankton were determined in oligotrophic Lake Toya in Japan over 5 years from May 1992 to May 1997. In 1992 and 1993, zooplankton biomass was up to 4.3 g dry weight m?2, whereas it decreased to <1 g dry weight m?2 after 1994. This extreme change in biomass was associated with the succession of dominant species from larger ones, such as Daphnia longispina and Cyclops strenuus (s. lat.), to smaller ones, such as Eubosmina tanakai and Bosmina longirostris. Consequently, this biomass change seemed to cause an increase in the chlorophyll a concentration in the euphotic zone and a decline in lake transparency. Because the birth rates of the dominant species were somewhat higher after 1994, the decline in the populations of larger crustaceans seemed to depend more on their rate of death rather than rate of birth, and this higher death rate is not considered to be attributed to food shortage. Although these results strongly suggest a top-down cascading effect of fish predation upon crustaceans, annual catches of two commercially important planktivorous fish species have also decreased in the lake, coincidentally with decreases in zooplankton biomass. This may be attributable to fishing regulations that prohibit catching smaller fish, implying that such smaller fish affect zooplankton and phytoplankton, as well as lake transparency.  相似文献   

20.
Pollen grains in the atmosphere of Didim, collected using a Durham sampler, were investigated in 2004 and 2005. Weekly pollen grains per square centimetre were calculated. Over a period of 2 years, 17,518 pollen grains/cm2 belonging to 40 taxa and unidentified pollen grains were recorded. In 2004, 9,879 pollen grains were counted per cm2, and in 2005 the value was 7,639 per cm2. The majority of pollen grains investigated were Pinus spp. (45.58%), Cupressaceae/Taxaceae (13.49%), Olea spp. (9.19%), Platanus spp. (7.62%), Gramineae (6.33%), Pistacia spp. (4.34%), Morus spp. (3.81%), Quercus spp. (2.02%), Abies spp. (1.39%), and Plantago spp. (1.11%). During the month of April, 40.46% of total pollen grains were recorded. According to our results, pollen season durations for the dominated pollen grains in Didim were: the 7th–33rd weeks for Pinus spp., nearly the whole year except summer for Cupressaceae/Taxaceae, the 17th–29th weeks for Olea spp., the 10th–24th weeks for Platanus spp., the 8th–46th weeks for Gramineae, the 8th–20th weeks for Pistacia spp., the 11th–21st weeks for Morus spp., the 17th–21st weeks for Quercus spp., the 9th–27th weeks for Abies spp., and the 7th–26th weeks for Plantago spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号