首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volumetric data on airborne pollen have been gathered for two consecutive years at a neotropical location (Caracas). Among the 65 taxa which were identified, pollen from aCupressus species (introduced) and from aCecropia species (indigenous) were dominant. Less numerous but also abundant (daily averages ≥5 grains/m3 air) were pollen from Gramineae, Urticaceae,Alcalypha, Pinus, Piperaceae andMimosa. Pollen grains were recorded daily throughout the year. They increased in numbers during April–May and again during November–December. The first peak was contributed mainly by indigenous species, the second peak mainly by introduced species.  相似文献   

2.
The aim of this work is to present the atmospheric pollen concentrations of Palencia, Spain. Data were collected for three consecutive years (1990–92). An active volumetric pollen trap, type CAP2, was used. During this time, 88 different pollen types were identified, of which 27 occured at more than 0.15% of the total pollen recorded annually. These types formed the main pollen spectrum of this sampling station. Pollen coming from herbs (Poaceae, Chenopodiaceae, Plantago Urticaceae, etc.) was predominant (53.79%); arboreal pollen (Quercus, Populus Cupressaceae, etc.) represented 42.11%, and pollen from shrubs (Ericaceae, Sambucus etc.) only 4.10%.

May and June was the time of the year with maximum pollen emission to the air. This was due to the quantities of pollen coming from Poaceae and Quercus which together represent 47.25% of the pollen recorded over the three‐year sampling period. Herbaceous pollen appeared throughout the year with maximum concentrations recorded in the spring, coinciding with the maximum levels of arboreal pollen in the atmosphere.

An analysis of multiple regression and one‐way anova test between pollen concentrations and selected meteorological parameters show that relative humidity and average temperature are the meteorological factors most correlated with the concentrations of specific pollen types (Plantago, Ligustrum, Sambucus, Carex). In the same way, when the winds are predominantly from the northeast (second quadrant), there are higher pollen concentrations of Sambucus Ericaceae and Mercurialis.  相似文献   

3.
An atmospheric survey at human height (1.5–1.8 ft) was carried out from February 1988 to January 1990, in four different ecozones of the Delhi metropolis. The samples were collected by using Burkard Personal Volumetric Sampler at weekly intervals. The sampler was operating for 15 min three times a day (07, 14, 20 hrs). Altogether, 84 pollen types were identified. Some of the dominant pollen types recorded were Poaceae (25.1%), Cheno/Amaranthaceae (14.5%) and Ricinus communis (12.3%) followed by Morus, Cannabis, Prosopis, Parthenium and Artemisia. Weekly variations were recorded for the total number of pollen of different types in different months. Two major pollen seasons 1. February — April and 2. August — October were observed, although pollen was recorded throughout the year. Significant variation in total and individual pollen concentration was recorded from different inhabited areas in the same urban locality. Any definite daily pattern in the occurrence of pollen was not recorded. The concentration at lower height was also poor.  相似文献   

4.
In order to find the qualitative and quantitative changes in airborne pollen concentrations in Delhi metropolis area an aerobiological survey was undertaken from September 1990 to August 1997. Air samples were collected daily using a Rotorod Aeroallergen Sampler at 10?m above the ground level. Ninety-four pollen types were recorded and the major contributors include Morus, Cannabis, Chenopod/Amaranth, Prosopis, Artemisia, and Eucalyptus. Ten pollen types contributed 90% of the total pollen load. Two major pollen seasons were recorded each year (February–April and September–November), although pollen grains in low frequency were recorded throughout the whole year. A significant reduction in pollen concentration was observed in subsequent years. The number of Morus, Cannabis, Prosopis, and Artemisia pollen decreased considerably while the number of Ricinus communis pollen did not show any considerable change during the study period. It is suggested that the reduction in pollen numbers from 1990 to 1997 in Delhi is due to massive clearing of vegetation for developmental activities of the city.  相似文献   

5.
An analysis of pollen loads of Apis mellifera was performed in order to identify the pollen sources that support the hives in the Andean region of Chubut. During the apicultural period (from 9 September 2010 to 12 March 2011), pollen loads were collected every fortnight in a selected apiary located in a transition area between the sub-Antarctic forests and the Patagonian steppe. Forty-six pollen types belonging to 26 plant families were found in the pollen spectrum of pollen loads, of which the most diverse were Asteraceae (11 types) and Fabaceae (six types). Families with major biomass contribution were Asteraceae (49%), Fabaceae (10%), Salicaceae (10%), Rhamnaceae (7%), Rosaceae (7%) and Brassicaceae (4%). Thirty-one per cent of the identified pollen belonged to the native flora. The major contribution of indigenous species occurred in late spring. Mutisia spp., Discaria type, Senecio spp., Adesmia spp. and Maytenus spp. were the most collected native taxa. Most plants providing pollen to the beehive are also nectariferous resources in the Andean region of Chubut. The protein content of the collected pollen ranged from 7.78% to 32.48%. The most collected types had protein content between 13.09% and 30.93%.  相似文献   

6.
The flowering patterns of Ulmus pumila and Fraxinus excelsior were studied during the 1990 growing season in order to investigate their pollen dispersion curves. The use of airborne pollen records as predictors of flowering of allergenic trees was evaluated. A sampling method to describe quantitative flowering phenophases was applied. A Burkard trap recorded airborne pollen in the city of Mar del Plata. The phenological sampling method showed that floral phenophase development is not always synchronous between trees. The variability registered was larger for F. excelsior than for U. pumila. A delay between flowering and the airborne pollen recorded was not noticed for Ulmus. The greatest amount of Ulmus pollen came from the local vegetation, mainly from U. pumila. Fraxinus pollen was recorded for a longer period after the F. excelsior flowering season the ended. Fraxinus pollen income came from F. excelsior but also from F. americana and F. excelsior var. aurea that flower later. An immediate decrease in airborne concentration was noticed for both pollen types following rain. When relatively strong rainfall was registered a decrease in the number of open flowers occurred only in F. excelsior.  相似文献   

7.
In wind-tunnel experiments, Niklas (1985) has demonstrated the ability of anemophilous plants to select pollen from their own species from the airstream. However, there have been no field experiments to establish whether this operates in nature. We surveyed the pollents on the stigmas of four different, coextensive, dioecious anemophilous species surrounded by a Pinus radiata plantation. The alien pine pollen was overrepresented relative to background levels on only one of the four species. For all three indigenous species with both male and female plants in the area, the highest proportion — in all cases more than 40% — of the pollen found on their stigmas came from their own species. One indigenous species lacked male plants in the area; consequently, the results from this species are difficult to interpret. However, for all four species, there was at least 15% pine pollen, and some pollen of other indigenous species. These results suggest that there is some pollen selection, but that the mechanisms are may be not as effective as Niklas has suggested.  相似文献   

8.
Summary The monthly trees and shrubs pollen (AP) content of the atmosphere during a whole annual period is analyzed. Thirty airborne pollen types have been identified. Most of them come from cultivated plants flowering in late winter-early spring. Thereby the annual peak is recorded in October. The highest frequencies recorded are those ofFraxinus americana, Acer negundo, Platanus spp. andMorus nigra. A second minor peak is recorded in March, and is mainly due toCasuarina spp./Myrica spp. pollen. Aeropalynological data are discussed and correlated with phytogeographical, phenological and meteorological parameters.  相似文献   

9.
李景照  黄红慧  高立献  贾赛 《广西植物》2018,38(9):1199-1204
该文报道了河南报春花科点地梅属1新记录种,即细蔓点地梅(Androsace cuscutiformis Franch.)。该种因其叶片显著分裂,裂片深达叶中部,具有典型匍匐茎而明显区别于该属在河南分布的其它种类,同时编制了河南点地梅属植物检索表,并对该种的叶表皮和花粉形态特征进行了观察和描述。结果表明:该种上下表皮细胞都为不规则多边形,垂周壁深波状,下叶表皮具有椭圆形气孔器,上下表皮都具有坑状雕刻的多细胞毛和球状蜡质,叶表皮形态特征和毛的类型可能为点地梅属系统分类和演化提供参考。花粉椭圆形,具三孔沟,沟较狭窄,花粉外壁具有坑状雕刻,未发现有萌发孔,该种是点地梅属裂叶组内最小的花粉粒。裂叶组因叶大、具长柄、叶缘有齿或深裂而明显区别于该属的其它组,该种与其近缘种腋花点地梅(A.axillaris)和掌叶点地梅(A.geraniifolia)间断分布的地理格局和特殊的繁殖方式表明该种很可能为点地梅属的原始类群在伏牛山、秦岭南坡及大巴山的孑遗植物。  相似文献   

10.
The influence of meteorological parameters on airborne pollen of Australian native arboreal species was investigated in the sub-tropical city of Brisbane, Australia over the five-year period, June 1994–May 1999. Australian native arboreal pollen (ANAP), shed by taxa belonging to the families Cupressaceae, Casuarinaceae and Myrtaceae accounts for 18.4% of the total annual pollen count and is distributed in the atmosphere during the entire year with maximum loads restricted to the months May through November. Daily counts within the range 11–100 grains m–3 occurred over short intervals each year and were recorded on 100 days during the five-year sampling period. Total seasonal ANAP concentrations varied each year, with highest annual values measured for the family Cupressaceae, for which greater seasonal frequencies were shown to be related to pre-seasonal precipitation (r 2 = 0.76, p = 0.05). Seasonal start dates were near consistent for the Cupressaceae and Casuarinaceae. Myrtaceae start dates were variable and established to be directly related to lower average pre-seasonal maximum temperature (r 2 = 0.78, p = 0.04). Associations between daily ANAP loads and weather parameters showed that densities of airborne Cupressaceae and Casuarinaceae pollen were negatively correlated with maximum temperature (p < 0.0001), minimum temperature (p < 0.0001) and precipitation (p < 0.05), whereas associations with daily Myrtaceae pollen counts were not statistically significant. This is the first study to be conducted in Australia that has assessed the relationships between weather parameters and the airborne distribution of pollen emitted by Australian native arboreal species. Pollen shed by Australian native Cupressaceae, Casuarinaceae and Myrtaceae species are considered to be important aeroallergens overseas, however their significance as a sensitising source in Australia remains unclear and requires further investigation.  相似文献   

11.
For the first time, a volumetric study ofBuenos Aires city atmosphere was conductedusing a Lanzoni collector from March 1997through March 1998. Fifty-four pollen typeswere recorded of which 13 had a relativeconcentration of more than 1% of the yearlytotal. The lowest concentration of pollengrains was recorded in June, when Urticas,pp., Morus spp., and Myrtaceae were low.On the other hand, the highest concentration ofpollen grains was reached in September, with anincrease in Fraxinus spp. Theaeropalynological record may be divided intothree periods: *AP Dominant from July toOctober, *NAP Dominant from November toMarch, and *Residual Period from April toJune with low pollen concentrations.The greatest number of species was recorded inNovember, when 32 types were present, and thelowest number of species in June, when only 13pollen types were recorded. In June, the pollenconcentration was not dominated by any specieswhereas in September 85% of the pollen wasderived from one species of Fraxinus.Earlier studies on the aeropalynology of BuenosAires City were performed using Tauber andRotorod samplers. They were comparable to thisstudy, especially since the pollen peak wasreached in September, although the main pollenproducing species were different.  相似文献   

12.
Atmospheric pollen was collected with a Burkard spore trap in Ankara, Turkey, from January 1990 to January 1993. A total of 135.787 grains/m3 belonging to 47 taxa were observed. The local pollen season started in February in 1990 and 1991 and in March in 1992. Relatively low pollen concentrations were recorded in 1990 and 1992, probably because of precipitation and low wind speed in the spring. A relatively high pollen concentration was recorded in 1991 which could be caused by higher wind speed in the spring and more precipitation during the winter. Cupressaceae/Taxaceae, Pinaceae, Gramineae, Betula, Moraceae, Platanus, Populus, Acer, Quercus, Chenopodiaceae/Amaranthaceae, Plantago, Rumex are found to be the dominant pollen types in the atmosphere in Ankara. The pollen composition generally reflects the vegetation of gardens, parks and roadsides, while the natural steppe vegetation of the area around Ankara is not properly represented.  相似文献   

13.
Phenological records as a complement to aerobiological data   总被引:1,自引:0,他引:1  
Phenological studies in combination with aerobiological studies enable one to observe the relationship between the release of pollen and its presence in the atmosphere. To obtain a suitable comparison between the daily variation of airborne pollen concentrations and flowering, it is necessary for the level of accuracy of both sets of data to be as similar as possible. To analyse the correlation between locally observed flowering data and pollen counts in pollen traps in order to set pollen information forecasts, pollen was sampled using a Burkard volumetric pollen trap working continuously from May 1993. For the phenological study we selected the main pollen sources of the six pollen types most abundant in our area: Cupressaceae, Platanus, Quercus, Plantago, Olea, and Poaceae with a total of 35 species. We selected seven sites to register flowering or pollination, two with semi-natural vegetation, the rest being urban sites. The sites were visited weekly from March to June in 2007, and from January to June in 2008 and 2009. Pollen shedding was checked at each visit, and recorded as the percentage of flowers or microsporangia in that state. There was an association between flowering phenology and airborne pollen records for some of the pollen types (Platanus, Quercus, Olea and Plantago). Nevertheless, for the other types (Cupressaceae and Poaceae) the flowering and airborne pollen peaks did not coincide, with up to 1 week difference in phase. Some arguments are put forward in explanation of this phenomenon. Phenological studies have shown that airborne pollen results from both local and distant sources, although the pollen peaks usually appear when local sources are shedding the greatest amounts of pollen. Resuspension phenomena are probably more important than long-distance transport in explaining the presence of airborne pollen outside the flowering period. This information could be used to improve pollen forecasts.  相似文献   

14.
A continuous aeropalynologic survey of the atmosphere of La Plata was carried out between July 1998 and June 2001 in order to study flowering development from winter to summer using a Lanzoni volumetric spore trap. The total pollen spectrum was represented by 79 pollen types. Between 10 and 12 pollen types showed a relative concentration of more than 1% of the annual total. Airborne pollen was mainly represented by Platanus, Fraxinus, Cupressaceae, Poaceae, Urticaceae, Cyperaceae, Myrtaceae, Celtis, Casuarina and Morus during the 3-year period. Acer and Ambrosia pollen types were only dominant in the first 2 years. Maximum absolute concentrations were recorded in the the July 1998–June 1999 period, and the minimum concentrations were recorded in the July 2000–June 2001 period. The contribution of the arboreal pollen grains was higher than 68% relative to the annual total for each year. Two periods of maximum pollen emissions were found for each year: pollen from aboreal taxa predominated from July to October, and pollen from herbaceous taxa predominated from November to March. There was very little pollen in the atmosphere between April and June. The maximum arboreal and herbaceous pollen emissions were recorded during hours of daylight: at 10:00 and 14:00 hours.  相似文献   

15.
Swati Gupta  Sunirmal Chanda 《Grana》2013,52(2):497-503
Parthenium hysterophorus, a recently invaded toxic weed, in Eastern India, is now growing gregariously in Salt Lake City — a newly developed township situated in the eastern fringe of the metropolitan city of Calcutta. The floristic survey revealed that most of the trees and shrubs in Salt Lake City have been introduced except for a few, which were recorded as natural occurrence, Parthenium being most prevalent among them. Ecological associations of Parthenium in various localities of Salt Lake City were also investigated. Aerobiological survey was done using a Burkard seven day Volumetric Spore Trap, with the object to record the occurrence of Parthenium pollen in the air of Salt Lake in different seasons along with other airborne types. A total of 45 pollen and 60 fungal spore types were trapped and recorded. The frequency of grass and cyperaceous pollen were found to be dominant followed by Trema. Frequency of Parthenium was relatively insignificant. Chemical analyses of the pollen grains of Parthenium including assay of carbohydrate, lipid, protein, etc., were done. Clinically one out of six patients showed ELISA positive reaction to Parthenium pollen.  相似文献   

16.
Aerobiological sampling through volumetric pollen traps requires the use of an appropriate adhesive, whose selection is a critical factor in these studies. This study compares the differences between two adhesives that have been widely used in aerobiological studies with the aim of providing a persuasive argument for using petroleum jelly as a viable alternative to silicone diluted with the banned substance carbon tetrachloride. The study was performed using Hirst-type pollen traps in an indoor controlled environment to avoid interference attributed to outdoor meteorological parameters. Furthermore, a gravimetric study was conducted simultaneously as a control. Four different pollen types with different pollen sizes and similar flowering seasons were studied (Acer, Platanus, Quercus and Rumex). Differences between pollen traps were minimised by interchanging the drums in each pollen trap every 24 hours. Gravimetric results showed homogeneous airborne pollen distribution in the study. No statistically significant differences were found between the results for the sample adhesives for Quercus and Platanus, whereas significant differences were observed for Rumex and Acer. In the case of Acer, more pollen grains were recorded using the petroleum jelly, while for Rumex, more pollen grains were recorded with silicone. After this experiment we consider that petroleum jelly can be used as a viable alternative adhesive to the banned silicone diluted with carbon tetrachloride.  相似文献   

17.
Pollen collected by honeybees foraging in the region of Bursa, Turkey was analysed for a whole year. Pollen loads were collected from the hives of Apis mellifera anatoliaca once a week and were classified by colour. Forty‐one taxa were identified from the pollen analyses of the loads and 14 of these had percentages higher than 1%. Only 2.05% of the total pollen could not have been identified. Dominant taxa include; Brassicaceae (11.19%), Helianthus annuus L. (10.84%), Cichorioideae (8.93%) Salix spp. (7.99%), Rosaceae (7.37%), Centaurea spp. (7.56%), Papaver spp. (7.41%), Knautia spp. (6.99%), Fabaceae (6.01%), Asteraceae (5.73%), Xanthium spp. (2.65%), Chrozophora spp. (2.45%), Plantago spp. (1.56%) and Acer spp. (1.54%) representing 88.23% of the total. Distinct variations in plant usage are seen through the year with initial use of Rosaceae, Salix, and to a lesser extent Brassicaeae. As these groups finish flowering the bees move onto Helianthus annuus, Centaurea through the summer followed by Asteraceae in the late summer and Fabaceae in the autumn. There is a strong reliance on crop species for pollen forage but a number of indigenous species are also seen within the samples. The most productive period for collecting various pollen types, and the ideal period to determine pollen preferences of honey bees was June‐August.  相似文献   

18.

Respiratory allergies triggered by pollen allergens represent a significant health concern to the Irish public. Up to now, Ireland has largely refrained from participating in long-term aerobiological studies. Recently, pollen monitoring has commenced in several sampling locations around Ireland. The first results of the pollen monitoring campaigns for Dublin (urban) and Carlow (rural) concerning the period 2017–2019 and 2018–2019, respectively, are presented herein. Additional unpublished pollen data from 1978–1980 and, 2010–2011 were also incorporated in creating the first pollen calendar for Dublin. During the monitoring period over 60 pollen types were identified with an average Annual Pollen Integral (APIn) of 32,217 Pollen × day/m3 for Dublin and 78,411 Pollen × day/m3 for Carlow. The most prevalent pollen types in Dublin were: Poaceae (32%), Urticaceae (29%), Cupressaceae/Taxaceae (11%), Betula (10%), Quercus (4%), Pinus (3%), Fraxinus (2%), Alnus (2%) and Platanus (1%). The predominant pollen types in Carlow were identified as Poaceae (70%), Urticaceae (12%), Betula (10%), Quercus (2%), Fraxinus (1%) and Pinus (1%). These prevalent pollen types increased in annual pollen concentration in both locations from 2018 to 2019 except for Fraxinus. Although higher pollen concentrations were observed for the Carlow (rural) site a greater variety of pollen types were identified for the Dublin (urban) site. The general annual trend in the pollen season began with the release of tree pollen in early spring, followed by the release of grass and herbaceous pollen which dominated the summer months with the annual pollen season coming to an end in October. This behaviour was illustrated for 21 different pollen types in the Dublin pollen calendar. The correlation between ambient pollen concentration and meteorological parameters was also examined and differed greatly depending on the location and study year. A striking feature was a substantial fraction of the recorded pollen sampled in Dublin did not correlate with the prevailing wind directions. However, using non-parametric wind regression, specific source regions could be determined such as Alnus originating from the Southeast, Betula originating from the East and Poaceae originating from the Southwest.

  相似文献   

19.
Stein Johansen 《Grana》2013,52(2):373-379
A survey of airspora collected on Jan Mayen, an isolated North Atlantic island (71°N, 8°30′W), using a Burkard seven-day volumetric trap from 24th April to 31th August, 1988, revealed only very small concentrations. A total of 10 different pollen types were recorded, constituting a seasonal sum of 29 pollen grains. The local pollen season was confined to July, with Oxyria digna and Salix as the most numerous pollen types recorded. Exotic pollen grains, namely Betula, Pinus and Castanea type, were recorded in three periods during June and July. Studies of back trajectories indicate North America and/or Iceland and Greenland as possible source areas for the Betula pollen. There were more diatoms than pollen in the local airspora. Fungal spores mainly occurred in late July and August. Cladosporium constituted less than 5% of the total seasonal sum of fungal spores, while basidiospores contributed nearly 12%. The highest diurnal average of Cladosporium was 27 spores m?3 air. The seasonal maximum of unidentified fungal spores reached a diurnal average of 639 spores m?1 air on 27th August.  相似文献   

20.
An aeropalynological study was carried out in the atmosphere of the city of Nerja (southern Spain) during a period of 4 years (2000–2003), using a Hirst type volumetric pollen trap. An annual pollen index of 59,750 grains, on average, was obtained with 80–85% of the total pollen recorded from February to May, with Pinus, Olea, Urticaceae, Cupressaceae, Quercus and Poaceae being the principal pollen producers in abundance order. A total of 29 pollen types that reached a 10-day mean equal to or greater than 1 grain of pollen per m3 of air is reflected in a pollen calendar. The results were compared with those obtained for nearby localities and a correlation analysis was made between the daily fluctuations of the main pollen types and total pollen, and meteorological parameters (temperature, rainfall and hours of sun). The daily, monthly and annual values reached by the most important pollen types from an allergenic point of view (Olea, Urticaceae and Poaceae) confirms Nerja as a high-risk locality for the residents and the numerous tourists who visit the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号