首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen-related allergy is a common disease resulting in symptoms of hay fever and asthma. Control of symptoms depends (generally) on avoidance and pharmacological treatment. Both of these approaches could benefit from accurate predictions of pollen levels for future days. We have constructed a model that uses meteorological data to predict ragweed pollen levels based on air samples collected daily in Kalamazoo, MI from 1991 to 1994. Ragweed pollen counts were converted to pollen grains/m3 of air (24-h average). We used Poisson regression, which appropriately handles the heterogenous variance associated with pollen data. Using standard statistical model selection procedures, combined with biological considerations, we selected rainfall, wind speed, temperature, and the time measured from the start of the season as the most significant variables. Using our model, we propose a method that uses the weather forecast for the following day to predict the ragweed pollen level. This approach differs from most previous attempts because it uses Poisson regression and because this model needs to be fit iteratively each day. By updating the coefficients of the model based on the information to date, this method allows the fundamental shape of the pollen distribution curve to change from year to year. Application to the Kalamazoo data suggests that the method has good sensitivity and specificity for predicting high pollen days.  相似文献   

2.
Times of pollination of different taxa in the atmosphere of Perugia (Central Italy) over an 11-year period (1982–1992) were recorded and analysed by means of a 7-day volumetric Hirst-type pollen trap. For some taxa, the pollination period varied from year to year from a chronological and/or quantitative point of view. Several taxa showed a linkage in their starting dates of pollination. Knowledge of this kind of linkage allows us to build a forecasting model.  相似文献   

3.
This study uses 6 years of atmospheric pollen data to examine temporal variability of airborne pollen concentrations at various scales. Airborne pollen was collected from 1985 to 1990 with a Burkard trap, located 18 m above ground at Scarborough College, Toronto, Canada. Pollen season parameters are defined and summarized for all taxa in preparation for developing forecasting models. Annual totals of pollen concentration show great interannual variability. The highest coefficient of variation occurs inTsuga, Fraxinus, Betula andFagus, while the lowest inQuercus andAmbrosia. Some taxa show periodic cycles consistent with mast reproductive behaviour. In many studies, the start of the pollen season is defined as an arbitrary percentage of the annual sum. As a result, the start of the season cannot be identified until the season has passed. As well, due to large fluctuations in annual sum, start dates are more variable. This is not practical for the purposes of forecasting. In this study, the start of the pollen season is defined by a critical concentration threshold which signals the onset of the main pollen season in all years. These critical levels ranged from 2 to 60 grains/m3 for the abundant taxa. Interannual variation in the start of the season is approximately 20 days for tree taxa, 5 days for Poaceae, and 2 days forAmbrosia. For many plants, dehiscence is triggered at a critical level of accumulated degree-days. Since annual rates of temperature increase show great variation, there is also interannual variability in the onset of pollen release. Multi-year average pollen curves incorporate these differences in onset and may give an inaccurate representation of the pollen season in a typical year. This paper presents a method of aligning yearly pollen curves to reduce seasonal variation and more accurately represent both the average timing and magnitude of the pollen season. For some types, such asBetula and Poaceae, the resulting curves are positively skewed. Tree taxa, in general, exhibit a more symmetric pollen concentration curve. Aligned average pollen concentration curves are presented for Toronto in the form of a pollen calendar. In addition, phenological data for all common taxa are summarized.  相似文献   

4.
Often, the functional form of covariate effects in an additive model varies across groups defined by levels of a categorical variable. This structure represents a factor-by-curve interaction. This article presents penalized spline models that incorporate factor-by-curve interactions into additive models. A mixed model formulation for penalized splines allows for straightforward model fitting and smoothing parameter selection. We illustrate the proposed model by applying it to pollen ragweed data in which seasonal trends vary by year.  相似文献   

5.
Ragweed is an allergenic weed of public health concern in several European countries. In Italy ragweed occurs prevalently in north-north-eastern regions, where sensitization is increasing. Because of the small diameter of pollen grains, ragweed pollen is often involved in episodes of long-range transport, as already shown in central Italy. The objective of this study was to evaluate the extent of such transport by comparing pollen and meteorological data for two northern Italian cities (Parma and Mantova) with data from Pistoia and Florence in central Italy. In 2002 and 2004 peaks in ragweed pollen levels were detected in these four cities on the same day, and concentrations of the grains were above clinical thresholds. Weather-map analysis and computation of back-trajectories showed that air masses from eastern Europe might carry ragweed pollen to a wide area of central and northern Italy. These findings suggest that episodes of long-range transport of ragweed pollen could be clinically relevant, resulting in sensitization of a large number of people. The results might provide a basis for monitoring and forecasting periods of long-distance transport with the objective of reducing their effects on allergic patients.  相似文献   

6.
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m(-3) can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12-16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2?×?2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations.  相似文献   

7.
The aim of this study was to determine the onset, length and end of the ragweed pollen season, taking into account diurnal, day-to-day, monthly and annual pollen variations, the effect of some meteorological parameters on atmospheric pollen concentrations and possible differences in the airborne pollen season and concentration due to sampling site. Airborne pollen was collected at three sites in central Croatia (Zagreb, Samobor and Ivanić Grad) during three pollen seasons (2002–2004). Seven-day Hirst-type volumetric pollen traps were used for pollen sampling. Ragweed pollen was the third most abundant pollen type to occur in the atmosphere of central Croatia. Total Ambrosia pollen concentration was the highest in the 2003 pollen season and the lowest in 2004 at all sampling sites. Maximum emissions were restricted to August and September. Intradiurnal periodicity showed a peak from 1000 to 1200 hours. The concentration of ragweed pollen during the pollen season was greatly influenced by temperature and precipitation: on rainy days accompanied by temperature decline, the air pollen concentration decreased abruptly. The results of this study are aimed at helping to alleviate the symptoms of allergic reactions in individuals with ragweed pollen hypersensitivity, thus improving their quality of life.  相似文献   

8.
This study analyzes the pollen counts obtained from the air of the greater Lyon (corresponding to the urban area of Lyon) an area which has been overrun by ragweed in the last 40 years. Two periods are investigated, 1982–1989 and 1990–1995. The year 1995 deserves specific attention because for the first time a campaign of ragweed eradication was launched in greater Lyon. From the data of the 14 pollination seasons it was possible to define some parameters: subpathological risk period, pathological risk period and the position and level of the pollen peak. Our study indicates the progression of the weed in the infested area over the two periods. In 1995 a slight decrease in the pollen count was observed but this was followed by a second peak probably related to later growth of some plants which had been cut. In this connection, 4 weeks weeding campaign is not long enough and in the future a 6-week campaign without the use of weedkillers should be planned. Determining the parameters of ragweed pollination every year will be useful both to patients and physicians concerned by allergy to ragweed pollen. According to the level of the ragweed pollen in the air, the patients may take appropriate medication. This study emphasizes the necessity to record air pollen concentrations over many years. In particular, the actual impact of cutting ragweed before pollination on ragweed pollen counts can only be evaluated after several years of eradication.  相似文献   

9.

Premise

Seed production is frequently limited by the receipt of insufficient or low-quality pollen, collectively termed “pollen limitation” (PL). In taxa with gametophytic self-incompatibility (GSI), incompatible pollen can germinate on stigmas but pollen tubes are arrested in styles. This allows for estimates of pollen performance before, during, and after self-recognition, as well as insight into the factors underlying pollen quality limitation in GSI taxa.

Methods

We scored pollen performance following self and outcross pollinations in Argentina anserina to identify the location of self-recognition and establish the relationship between pollen tubes and seed production. We then estimated quantity and quality components of PL from >3300 field-collected styles. We combined our results with other studies to test the prediction that low pollen quality, but not quantity, drives higher PL in self-incompatible (SI) taxa than in self-compatible taxa (SC).

Results

Self and outcross pollen germinated readily on stigmas, but 96% of germinated self-pollen was arrested during early tube elongation. Reproduction in the field was more limited by pollen quality than by quantity, and pollen failure near the location of self-recognition was a stronger barrier to fertilization than pollen germination. Across 26 taxa, SI species experienced stronger pollen quality, but not quantity, limitation than SC species.

Conclusions

Evaluating pollen performance at multiple points within pistils can elucidate potential causes of pollen quality limitation. The receipt of incompatible pollen inhibits fertilization success more than insufficient pollen receipt or poor pollen germination in A. anserina. Likewise, pollen quality limitation drives high overall PL in other SI taxa.  相似文献   

10.
About 30% of the Hungarian population has some type of allergy, 65% of them have pollen sensitivity, and at least 60% of this pollen sensitivity is caused by ragweed. The short (or common) ragweed (Ambrosia artemisiifolia = Ambrosia elatior) has the most aggressive pollen of all. Clinical investigations prove that its allergenic pollen is the main reason for the most massive, most serious and most long-lasting pollinosis. The air in the Carpathian Basin is the most polluted with ragweed pollen in Europe. The aim of the study is to analyse how ragweed pollen concentration is influenced by meteorological elements in a medium-sized city, Szeged, Southern Hungary. The data basis consists of daily ragweed pollen counts and averages of 11 meteorological parameters for the 5-year daily data set, between 1997 and 2001. The study considers some of the ragweed pollen characteristics for Szeged. Application of the Makra test indicates the same period for the highest pollen concentration as that established by the main pollination period. After performing factor analysis for the daily ragweed pollen counts and the 11 meteorological variables examined, four factors were retained that explain 84.4% of the total variance of the original 12 variables. Assessment of the daily pollen number was performed by multiple regression analysis and results based on deseasonalised and original data were compared.  相似文献   

11.
Ragweed pollen: The aeroallergen is spreading in Italy   总被引:1,自引:0,他引:1  
Presently in Europe, ragweed pollen as an aeroallergen is not as important as Poaceae,Parietaria or Betulaceae, even if in some countries the plant is beginning to influence the local composition of the airborne pollen spectra. In northern Italy, the presence of ragweed airborne pollen has only been reported since the beginning of the 1980’s and it is increasingly spreading from year to year. Given this situation, the allergologists have begun to regard the potential risk of sensitisation to ragweed pollen with much attention. Up to now, such pollen has not been included in the routine allergological tests. In 1995 in some sites of northern Italy (Turin, Milan, Trieste), the concentration values of ragweed pollen were remarkable (∼ 20–30 p/m3) and on the increase with respect to the previous years. This investigation aims at focusing the atmospheric concentration trend on this new aeroallergen (Ambrosia sp.) in Italy from 1991 throughout 1995.  相似文献   

12.
Ambrosia pollen represents a significant allergenic risk for pollen-sensitive people also in Slovakia. The aim of this study was to compare the results of the monitoring of Ambrosia pollen concentrations and pollen seasons in Bratislava during years 2002–2007. Measurements were performed by the volumetric method using Burkard volumetric spore trap at the height of 10 m above ground level. During six monitored years, a total of 11,334 Ambrosia pollen grains per cubic meter of air were recorded. The highest total ragweed pollen amount was detected in 2002 (2,577 pollen grains of the total annual pollen concentration) and the lowest ragweed pollen concentration (1,213 pollen grains) was determined in 2007. However, mentioned year was represented as the year with the longest pollen season among the all monitored years in Bratislava (41 days). The pollen season peak day of 2002, 2004, 2005 and 2006 was recorded at the beginning of September; in 2003 and 2007 the peak was at the second half of August. The highest daily amount of Ambrosia pollen grains (more than 100 grains per cubic meter of air) was in 2002 (12 days). The results can be utilized to help to prevent symptoms of allergic reactions to Ambrosia pollen and improve quality of life during seasonal allergic diseases in ragweed pollen-sensitive people.  相似文献   

13.
In a palynological study of the Amaranthaceae, a peculiar type of reticulate pollen was found that is characterized by the presence of a porate aperture in each of the meshes of the reticulum. Previously, this type of pollen has been described as “reticulate”;. However, closer investigations show that the reticulum in pollen of Amaranthaceae is composed of mesoporia and pores. Consequently, this kind of reticulum represents a fundamentally different type, and is not homologous to the well known examples of pollen grains with a true reticulum (e.g. in Bromeliaceae, Lamiaceae). Therefore, the term “metareticulate”; is proposed (i.e., pantoporate pollen with a reticulum‐like structure of mesoporia and pores). The new term allows to distinguish between metareticulate and truely reticulate pollen, what is important in phylogenetic studies. Metareticulate pollen occurs only within lineages characterized by pantoporate pollen, and is found to be derived from pantoporate pollen in a cladistic analysis. Apart from the Amaranthaceae, metareticulate pollen evolved parallel in Vivianiaceae and Zygophyllaceae. In Caryophyllaceae and Convolvulaceae only a trend towards a metareticulation is observed. Metareticulate pollen is suggested as representing the highest developmental level in successiformy, which is one of the major patterns in pollen evolution leading from tricolpate to pantoporate grains.  相似文献   

14.
Anthemideae (Asteroideae: Asteraceae) pollen grains have basal columellae, a structural type called “anthemoid” in earlier publications. To survey structure variation in Anthemideae pollen, we examined freeze-sectioned grains from 45 species within 23 representative genera using scanning electron microscopy (SEM). From resulting data and a literature review, we concluded that: 1) pollen of Anthemideae taxa is qualitatively identical except for Ursinia (grains essentially lack basal columellae) and the Artemisia group (branches of basal columellae are complex and interwoven); 2) the double tectum (a term introduced in this study) is a synapomorphy of Asteroideae and plesiomorphic in Anthemideae; 3) apomorphies of Anthemideae grains include large basal columellae, a thick foot layer, and absence of internal foramina; and 4) Anthemideae pollen is qualitatively different from similar pollen in Lactucoideae, a distinction we recognized by restricting “anthemoid” to Anthemideae grains. Ursinia grains have occasional basal columellae and features resembling rolled-up columellae; we consider these vestiges of a reversal to the plesiomorphic condition. To assess quantitative structural variation, 2,200 image-analysis measurements were taken from 73 SEM micrographs. Intrageneric variation was analyzed by standard deviation, and intergeneric variation by principal components analysis. Compared to other Anthemideae taxa, the structural elements of Artemisia grains have reduced dimensions and variability. Otherwise, structural radiation of Anthemideae pollen has produced a phenetic continuum.  相似文献   

15.
Palynology provides the opportunity to make inferences on changes in diversity of terrestrial vegetation over long time scales. The often coarse taxonomic level achievable in pollen analysis, differences in pollen production and dispersal, and the lack of pollen source boundaries hamper the application of diversity indices to palynology. Palynological richness, the number of pollen types at a constant pollen count, is the most robust and widely used diversity indicator for pollen data. However, this index is also influenced by the abundance distribution of pollen types in sediments. In particular, where the index is calculated by rarefaction analysis, information on taxonomic richness at low abundance may be lost. Here we explore information that can be extracted from the accumulation of taxa over consecutive samples. The log-transformed taxa accumulation curve can be broken up into linear sections with different slope and intersect parameters, describing the accumulation of new taxa within the section. The breaking points may indicate changes in the species pool or in the abundance of high versus low pollen producers. Testing this concept on three pollen diagrams from different landscapes, we find that the break points in the taxa accumulation curves provide convenient zones for identifying changes in richness and evenness. The linear regressions over consecutive samples can be used to inter- and extrapolate to low or extremely high pollen counts, indicating evenness and richness in taxonomic composition within these zones. An evenness indicator, based on the rank-order-abundance is used to assist in the evaluation of the results and the interpretation of the fossil records. Two central European pollen diagrams show major changes in the taxa accumulation curves for the Lateglacial period and the time of human induced land-use changes, while they do not indicate strong changes in the species pool with the onset of the Holocene. In contrast, a central Swedish pollen diagram shows comparatively little change, but high richness during the early Holocene forest establishment. Evenness and palynological richness are related for most periods in the three diagrams, however, sections before forest establishment and after forest clearance show high evenness, which is not necessarily accompanied by high palynological richness, encouraging efforts to separate the two.  相似文献   

16.
Gynoecium development in taxa of the tribeVanguerieae (Rubiaceae, subfam.Antirheoideae) was studied, using primarily a 2- and a 5-carpellate genus (Keetia andVangueria) as examples. All investigated taxa, characterized by ovaries with a solitary, ± apically inserted, pendulous anatropous ovule per locule/carpel, showed a very similar gynoecium development. Comparisons with other uniovulateRubiaceae (taxa of subfam.Rubioideae) revealed that notwithstanding the place of insertion and orientation of the solitary ovules (apically vs. basally inserted, pendulous vs. erect, anatropous ovules) the gynoecium development follows the same pattern; differing ovule insertion and orientation can easily be explained by the principle of variable proportions. — Since secondary pollen presentation is characteristic for the tribe, particular attention was paid to the development of the conspicuous “stylar head”-complex, defined here as structural unit comprised of pollen presenting organ, “receptaculum pollinis”, plus stigmatic (i.e., receptive) surfaces. It was found that their morphological differentiation, following the same pattern in all investigated taxa, starts at very early stages of floral development. They already had their final shape at a stage when the ovule development in the ovary had just barely started. The fully developed, actual “receptaculum pollinis” is made up of enormously enlarged, ± cylindrical epidermis cells which have peculiar ring-like thickenings in vicinity of and parallel to the outer tangential walls (a “mechanical barrier” preventing pollen tubes from entering?) and a much smaller-celled subepidermal tissue. With regard to shape, size, and exposure of the stigmatic surfaces, the investigated taxa exhibited certain morphological differences. These were found to be correlated with differences in androecium structure (and, ultimately, pollen presentation).  相似文献   

17.
18.
Representations are based on plant populations, continuously distributed over their habitats according to specified density patterns. Migration of genetic material takes place via pollen and seed dispersal. Monoecious plants with arbitrary rates of self-fertilization and dioecious plants are considered. The model was constructed with the intention of determining coefficients of inbreeding and kinship for all locations within the seed population after its dispersal over the habitat, assuming the respective genetic relationships of the parental generation to be known. To display the consequences of single components hidden in the general result, the following specifications have been treated: finite population size combined with random dispersal of seed, equilibrium states for hypothetically infinite population size with “limited” dispersal of pollen and seed, random dispersal of pollen, and random dispersal of seed.  相似文献   

19.
Benjamin R. Montgomery 《Oikos》2009,118(7):1084-1092
Pollinator constancy and pollen carryover are both thought to mitigate competitive effects that result when shared pollinators cause loss of pollen to heterospecific flowers. I present analytical and simulation models to investigate how pollinator constancy and pollen carryover interact with each other and with the relationship between pollen receipt and seed set to determine pollination success in competitive environments. With inconstant pollinators, increased pollen carryover reduces variance in pollen receipt without affecting average pollen receipt. Consequently, for flowers requiring at least a threshold quantity of pollen for success, rare flowers with inconstant pollinators benefit from reduced carryover, especially for high pollen receipt thresholds, whereas common flowers benefit from increased carryover, especially for low receipt thresholds. Pollinator constancy is predicted to increase pollen receipt, especially if pollen carryover rates are low. As a result, increased pollinator constancy reduces the range of pollen receipt thresholds for which carryover is beneficial. Similarly, for flowers whose pollination success is a convex function of pollen receipt, carryover is expected to increase fecundity if pollinators are inconstant, but with even a low degree of pollinator constancy, carryover reduces fecundity. These results predict that rare plants with many ovules per flower benefit from dispersing aggregations of pollen, especially if their pollinators exhibit constancy, whereas plants with inconstant pollinators and low thresholds of pollen receipt benefit from pollen grains dispersing individually to increase the number of flowers reached by the pollen.  相似文献   

20.
A graphical method is presented which allows the prediction of phase resetting curves of circadian rhythms for both type 1 and type 0 resetting, starting from one experimentally determined phase resetting curve. Calculations were based on literature data for the pupal eclosion rhythm of Drosophila pseudoobscura. The method is based on the assumption that for all practical purposes the rhythm may be approached as a “simple clock”, i.e. an oscillator with only one state variable, namely its phase or circadian time, CT. Besides predicting both “types” of phase resetting the method is capable to locate the “position” of the phase singularity and thus the transition from type 1 to type 0 resetting. This graphical method is an elaboration of the “transformation method”, developed in 1972 by A. Johnsson and H. G. Karlsson, which was effective in predicting phase resetting by “strong” stimuli, but failed in the case of “weak” stimuli. Predictions made using the extended transformation method are in good agreement with experimental results obtained with Drosophila. Also for the flesh fly, Sarcophaga argyrostoma, a prediction is made of the position of the phase singularity of the eclosion rhythm and compared with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号