首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study dealt with six species of Acalyphoideae and 18 species of Euphorbioideae occurring in the Caatinga ecoregion, with emphasis on endemic species. Pollen samples were obtained from herbarium specimens and were acetolysed and analysed via light and scanning electron microscopy. The pollen of three genera of Acalyphoideae was medium to large, 3-colporate or 3-colpate, with an echinate-perforate exine that was reticulate, bireticulate, and microreticulate. The six genera of Euphorbioideae studied exhibited pollen grains that were small, medium and large; 3-colporate with margines; and an exine with microreticulate, microreticulate-rugulate, microreticulate-caveate, and reticulate ornamentation. The pollen characteristics were more variable in the Acalyphoideae compared to the relatively homogeneous Euphorbioideae. This study provides new data and interpretations of the pollen morphology of two subfamilies of the Euphorbiaceae of the Caatinga ecoregion in Brazil.  相似文献   

2.
Masamichi Takahashi 《Grana》2013,52(6):309-312
The exine development in Illicium was investigated using transmission electron and field emission scanning electron microscopy. The protectum and procolumellae appear on protruding sites of the microspore cytoplasm in the early tetrad stage. The protectum takes the form of a reticulate pattern with perforations within the callosic wall. After dissolution of the callosic wall, the central part of muri rises to form tectal ridges. The developing tectum, shows an echinate appearance in sectional view and has perforations at both sides around each lumen. There are two kinds of columellae; those forming continuous rings around each lumen and others which are individual rods standing beneath the tectum. The present developmental study in Illicium showed that the initial simple reticulate pattern formed within the callosic wall develops into the complex reticulate exine pattern of the differentiating tectum during the free microspore stage. The tectum has an angular shape with perforations and is supported by the two kinds of columellae.  相似文献   

3.
The pollen of three closely related genera, Aëtoxylon, Amyxa, and Gonystylus is compared in SEM and TEM with that of Thymelaeaceae, s. s. The Thymelaeaceae have spherical, pantoporate grains with a crotonoid tectum in which the basic subunit is triangular in shape and forms a continuous triangular array. Thin section (TEM) and fractures (SEM) revealed that these subunits are attached to a ringlike network of horizontal rods. Within the Thymelaeaceae, the triangular subunits vary in the number of subdivisions and degree of fusion and form a morphological continuum. Aëtoxylon, Amyxa, and Gonystylus also have spherical, pantoporate pollen but with a tectum in which almost all of the distinction of the subunits appears to have been lost. The structure of the exine in Aëtoxylon, Amyxa, and Gonystylus, however, is unique thus far within the angiosperms. Thin section revealed a thick tectum with a layer of short or even granular columellae, then a thin, discontinuous layer from which larger columellae appear to hang. There is no evidence of an endexine even in the region of the apertures. The distinctive exine structure would support the treatment of Aëtoxylon, Amyxa, and Gonystylus as a separate family, Gonystylaceae, allied to the Thymelaeaceae.  相似文献   

4.
The pollen morphology of eight species of Nigella (Ranunculaceae) was examined by scanning and transmission electron microscopy. The exomorphology of all species was identical: 3-colpate, spinulose, and punctate, but thin sections revealed two structural patterns. The ektexine structure of Nigella integrifolia, consisting of thickened foot layer, columellae, and thin tectum, is typical for the family as well as the order Ranunculales in general. In contrast, the remaining seven species, N. arvensis, N. damascena, N. elata, N. hispanica, N. sativa, N. segetalis, and N. stellaris, have an ektexine with an additional unit, a horizontal layer with shorter columellae, placed between the foot layer and tectum. Of all genera examined in the Ranunculaceae, only Nigella had this unusual stratification. This difference in the exine structure would add support to the treatment of N. integrifolia as a monotypic genus, Komaroffia integrifolia (Regel) Lemos Pereira.  相似文献   

5.
The pollen morphology and ultrastructure of 20 species, representing eight genera of the Magnoliaceae are described based on observations with light, scanning and transmission electron microscopy. The family represents a homogeneous group from a pollen morphological point of view. The pollen grains are boat-shaped with a single elongate aperture on the distal face. The tectum is usually microperforate, rarely slightly or coarsely rugulose. Columellae are often irregular, but well-developed columellae do occur in some taxa. The endexine is distinct in 14 species, but difficult to discern in the genera Parakmeria, Kmeria and Tsoongiodendron. Within the aperture zone the exine elements are reduced to a thin foot layer. The intine has three layers with many vesicular-fibrillar components and tubular extensions in intine 1. The symmetry of the pollen grains, shape, type of aperture and ultrastructure of the intine show a remarkable uniformity in the family. Nevertheless there is variety in pollen size, ornamentation and the ultrastructure of the exine. The pollen of Magnoliaceae is an example of an early trend of specialization, and supports the view that Magnoliaceae are not one of the earliest lines in the phylogeny of flowering plants.  相似文献   

6.
A survey of pollen morphology of 40 species representing eight genera of the primarily North American subtribe Microseridinae reveals seven of the eight genera to have caveate, echinolophate, tricolporate grains, Picrosia being the only taxon with echinate pollen. Sectioned grains reveal the exine to consist of an ektexine and endexine. The ektexine, composed of spines, columellae, and foot layer appears to be of two basic types, one with six or seven levels of horizontally anastomosing columellae which are reduced to a single columellar layer under the paraporal lacunae and the second, a bistratified ektexine not reduced to a single layer below the paraporal lacunae. Sectioned exines of Pyrrhopappus are unusual, having very large columellae fused to the foot layer below ridges and highly reduced columellae under lacunae. Endexine organization is similar in most of the genera. Exceptions to this are Pyrrhopappus and some species of Agoseris, which have an “endexine 2” layer. Subtribe Microseridinae is essentially stenopalynous. The pollen data support most of the relationships suggested by Stebbins in his classification. The genera Agoseris, Microseris, Nothocalais, and Phalacroseris seem to form a natural group while Krigia and Pyrrhopappus form another cohesive series. The position of Picrosia, as an advanced offshoot of Pyrrhopappus, is not supported by the pollen data.  相似文献   

7.
Pollen of 53 species of Dilleniaceae and Actinidiaceae was examined by light microscopy, scanning electron microscopy, and a selected group in transmission electron microscopy. Dilleniaceae pollen ranges from tricolpate, tricolporate, tetracolpate, and incipiently inaperturate. Tricolpate types occur only among the Old World subfamily Dillenioideae and the compound aperturate (3-colporate) condition is restricted to the subfamily Tetraceroideae. Within the Dilleniaceae the tricolpate pollen type with elongated apertures is considered primitive, having given rise to the 3-colporate and 4-colpate conditions. The striking pollen dimorphism in the Neotropical species of Tetracera, all of which are androdioecious, is documented; however, in contrast to previous reports, pollen from bisexual flowers appears to be incipiently inaperturate and not pantoporate. The inaperturate condition is interpretated as an early stage in the evolution of outcrossing. Pollen morphology does not support a close relationship between Dilleniaceae and Actinidiaceae. Pollen morphological differences that can be noted between these families are: tectum complete and predominantly psilate or psilate-granular in Actinidiaceae, tectum incomplete, punctate to reticulate in Dilleniaceae; an equatorial bridge of ektexine over the endoaperture usually present in Actinidiaceae, absent in Dilleniaceae; columellae reduced in Actinidiaceae, columellae usually well-developed in Dilleniaceae. Pollen morphology does not argue against a close relationship between Actinidiaceae and Theaceae.  相似文献   

8.
9.
10.
Pollen from Simmondsia chinensis (Simmondsiaceae) was examined in LM, SEM, and TEM. The pollen is shed as monads, triangular in shape in polar view, with a 3-porate aperture type in which the pores are large and poorly defined. The tectum is irregularly scabrate, sometimes forming minute “islands” topped with spinules. In thin section, the endexine is thickened and lamellate in the aperture regions, and narrow in the mesoporus; the foot layer is well-defined but noticeably thicker in the mesoporus; and thin columellae support an essentially complete tectum. The pollen of four genera, Buxus, Pachysandra, Sarcococca, and Styloceras, from the Buxaceae to which Simmondsia has been assigned by some authors, was also examined and illustrated. The pollen morphology of two families frequently aligned with Simmondsiaceae, Euphorbiaceae and Pandaceae, is briefly discussed. For the most part pollen morphology supports the treatment of Simmondsia as a monotypic family, Simmondsiaceae.  相似文献   

11.
Pollen morphology of 27 species, eight subspecies and one variety of Wendlandia was studied using scanning electron microscopy (SEM). Wendlandia pollen are monads, radiosymmetric, small in size, tricolporate (rarely tetracolporate or bicolporate) and spheroidal (rarely subprolate or suboblate) in equatorial view. The compound aperture consists of ectocolpus, mesoporus and endocolpus. In addition, reticulate sexine and granular nexine were observed. The pollen wall ultrastructure of two Wendlandia spp. was examined by transmission electron microscopy (TEM). The exine consists of the tectum, columellae, foot layer and endexine. The endexine is thickened into a costa around the aperture. The intine forms a protruding oncus at the aperture. The palynological characters show a remarkable uniformity among the Wendlandia spp. Differences with Rondeletia, the main genus of tribe Rondeletieae, exist in the exine pattern, the endoaperture and the pollen wall structure. Our observations indicated that the endoaperture type and the structure of the pollen wall of Wendlandia were similar to those of the Gardenieae–Pavetteae–Coffeeae–Octotropideae clade, which provided palynological evidence for a closer relationship of Wendlandia to subfamily Ixoroideae and the transfer of Wendlandia out of Rondeletieae. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 128–141.  相似文献   

12.
In the microspore tetrad period the exine begins as rods that originate from the plasma membrane. These rods are exine units that on further development become columellae as well as part of the tectum, foot layer and “transitory endexine”. The primexine matrix is very thin in the future sites of the pores. At these sites the plasma membrane and its surface coating (glycocalyx) are without exine units and adjacent to the callose envelope. The exine around the aperture margin is characterized by units of reduced height. After the exine units and primexine matrix have become ca 0.2 μm in height a fibrillar zone forms under the aperture margin. It is the exine units around the aperture that are templates for exine processes on apertures of mature pollen. Oblique sections of the early exine show that the tectum consists of the distal portions of close-packed exine units. The exine enlarges in the free microspore period but initially its substructure (tectum, columellae, foot layer and transitory endexine) is not homogeneous and unit structures are visible until after the vacuolate microspore period. There are indications of a commissural line/plane (junction plane) which separates the foot layer from the endexine during early development. Our observations of development in Echinodorus pollen extend a growing number of reports of “transitory endexines” in monocot pollen. The exine unit-structures become 0.2 μm or more in diameter and many columellae are composed of only one exine unit. Spinules become exceptionally tall, many protruding ca 0.7 μm above the level of the tectum as units only ca 0.1 μm in diameter. The outer portion of the tectum fills in around spinules and by maturity they are microechinate with their bases spread out to ca 1 μm or more. Unit structures can be seen with SEM in mature pollen following oxidation by plasma ashing and in the tapetum these units are arranged both radially, as in spinules, and parallel with the tapetal surfaces. There are clear indications of such an arrangement of units in untreated fresh pollen. Units comprising the basal part of the exine are not completely fused by sporopollenin accumulated during development. This would seem to be a characteristic feature, based on published work, of the alismacean pollen. Our use of a tracer shows, however, that there is considerable space within or between exine structure of mature Echinodorus pollen. Based upon the ca 0.1 μm size of exine-units formed early in development and exine components seen after oxidative treatment it seems that the early (primary) accumulated sporopollenin has greater resistance to oxidation than sporopollenin added, secondarily, around and between units later in development. Both primarily and secondarily accumulated sporopollenin are resistant to acetolysis but published work indicates that acetolysis alters exine material. At the microspore tetrad time and until the vacuolate stages tapetal cells are arranged as in secretory tapetums. During early microspore stages there are orbicules at the inner surface of tapetal cells. At free microspore period tapetal cells greatly elongate into the loculus and surround the microspores. By the end of the microspore vacuolate period tapetal cells release their cellular contents and microspores are for a time enveloped by tapetal organelles and translocation material.  相似文献   

13.
Of all species comprising the two genera of the Cabombaceae, only Brasenia schreberi J. F. Gmel. and Cabomba caroliniana Gray have been critically investigated with regard to their pollination biology. Brasenia schreberi has been shown to be anemophilous, while C. caroliniana has an entomophilous (myophilous) pollination syndrome. In the present paper, a number of pollen and pollen-related characters, including pollen size, shape, quantity, terminal settling velocity, pollen-ovule ratios, and overall exine architecture of B. schreberi and C. caroliniana are evaluated. Pollen from both species is elliptic, monosulcate, and has a tectate-columellate sporoderm with supratectal surface ornamentation. Grains of B. schreberi are small, produced in copious amounts, and settle relatively slowly. Flowers of this species have large pollen-ovule ratios. The exine of B. schreberi pollen is scabrate, relatively thin, has a uniformly thick sexine composed of a two-zoned (homogeneous/granular) tectum and distinct columellae, and a homogeneous nexine. Pollen of C. caroliniana is relatively large, produced in small quantities, and has a rapid terminal settling velocity. Flowers exhibit small pollen-ovule ratios. Exine organization of C. caroliniana pollen is typically two times thicker than that of B. schreberi; ornamentation is striate. Nonapertural sexine regions have a thick tectum and well-defined columellae, with both sexine components traversed by a dense system of channels. The nexine is relatively thin. All of the palynological characters examined correlate well with the anemophilous and entomophilous syndromes of B. schreberi and C. caroliniana, respectively. Moreover, several other parameters of exine ultrastructure from each species exhibit positive correlations with the respective pollination mechanisms, including: tectum thickness, columellae diameter, tectum-nexine ratios, and the consistency, distribution, and total amount of pollenkitt present. Overall exine ultrastructure is also discussed from a historical perspective as well as with respect to its phylogenetic significance.  相似文献   

14.
Pollen of 110 species from 18 genera in thePortulacaceae has been examined by light and scanning electron microscopy, and a representative number by transmission electron microscopy. Three basic pollen types were found: 3-colpate with thick tectum and foot layer with prominent unbranched columellae and an extremely thin endexine; pantoporate with thick tectum and foot layer with branched columellae enclosing pores and an endexine that is one to two layers thick; pantocolpate with thin tectum and foot layer with broad, short unbranched columellae and an inconspicuous endexine. All pollen types, however, have a spinulose and tubuliferous/punctate ektexine. Also, all the genera except three,Calandrinia H.B.K.,Montia L. andTalinum Adanson are stenopalynous. There is, however, no absolute correlation between pollen morphology and geographical distribution, although both the major centre of palynological diversity and the majority of all species with tricolpate grains occur in South America.  相似文献   

15.
The pollen morphology and ultrastructure of 20 species of Camellia (Theaceae) representing the four subgenera were examined. The pollen is tricolporate, spherical to slightly oblate or prolate, with scabrate to rugulate exine sculpturing. The tectum is traversed by perforations that vary in diameter. Pollen wall structure is tectate-columellate, the columellae fused to a footlayer. Endexine is present in all of the taxa examined. The greatest variation was observed in pollen size.  相似文献   

16.
A. Spencer Tomb 《Grana》2013,52(1-3):79-89
The Lactuceae contain two basic pollen types, echinolophate and echinate. Most taxa have echinolophate, tricolporate pollen. Internally, most ektexines are composed of a perforate spiny tectum, several levels of columellae, a cavus, and a foot layer. In lacunae, the columellae are reduced to a single level and the cavus is often absent. Highly modified echinolophate pollen grains are found in Scolymus, Scorzonera and Tragopogon. Scolymus, Catananche, Scorzonera, and Tolpis have distinctive exine stratification patterns. Exines of Catananche and, to a lesser extent, those of Tragopogon contain internal foramina like those found in the Heliantheae. Echinate pollen is found in all subtribes and is probably ancestral. However, some echinate grains are probably derived.  相似文献   

17.
The sporopollenin of pollen exines of Ambrosia trifida is soluble in fused potassium hydroxide, in strong oxidizing solutions, and in certain organic bases. It is insoluble in other organic and inorganic acids and bases, in lipid solvents, and in detergents. The outer exine layer of gymnosperm and angiosperm pollen dissolves in 2-aminoethanol. The inner exine layer, as well as the exine of pteridophyte spores, is insoluble. The exine dissolution process in 2-aminoethanol involves swelling and disintegration of exine structures, leaving some residual globules. Sporopollenin shares some solubility properties with lignin and cutin but appears to be chemically distinct from these substances.  相似文献   

18.
The proexine that forms within the callosic envelope before the end of the microspore tetrad period is thick (about 1 μm) and exceptionally complex. It has components equatable with tectum, columellae, and a nexine that includes lamellar zones. All these components persist in the exine although late in development they become difficult to recognize because this exine is reduced in thickness, apparently by stretching, to a maximum of 0.2 μm. Strelitzia is an example of an exine template, with receptors for sporopollenin, that is not maintained during development. The Strelitzia microspore surface changes from an exine like that on an interaperture sector to the channeled intinelike system common for the apertures of pollen grains. The exine on sterile grains gives what may be a rare view of a stabilized immature exine. The mature exine on viable pollen grains resembles this early exine only in the most impressionistic way. Tapetal cells go through at least one cycle of hyperactivity, dedifferentiation, mitosis, and then again hyperactivity before they finally decline.  相似文献   

19.
Zea mays (maize) pollen exines have been purified with the use of differential centrifugation and sucrose gradients, followed by mild detergent and high salt treatment. The final exine fraction is highly purified from other organelles and subcellular structures as assayed by transmission electron microscopy. Using mature maize pollen as the starting material, 0.2 to 0.3% of the total pollen protein remained associated with the exine fraction throughout the purification. Seven abundant sodium dodecyl sulfate-extractable proteins are detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the final fraction. Amino acid analysis reveals that one of the proteins contains a substantial amount of hydroxyproline, a characteristic of some primary cell wall proteins. The amino acid composition of the 25-kD protein strongly implies that it is an arabinogalactan protein. When exines are purified from earlier pollen developmental stages, a subset of the proteins found in the mature pollen exine is seen.  相似文献   

20.
The pollen morphology of 9 species of Paeonia L. has been investigated with both light microscope and scanning electron microscope. In addition, the exine structure of pollen grains of Paeonia suffruticosa and P. lactiflora was examined by transmission electron microscope. Tricolporoidate aperture is an important character of the pollen grains of the Paeonia. The surface of the exine is characterized by reticulate, foveolate and irregularly tuberculate-foveolate sculpture under the SEM. Thin sections of the pollen of this genus shows that the layers of exine are complete i.e. a perforate rectum to semitectum, columellae and foot layers. The endexine is continuous, considerably thickened in the aperture areas and relatively thin or indistinct in the mesocolpia. Paeonia has been placed in Ranunculaceae. But since the beginning of this century many authors have suggested to separating Paeonia from Ranunculaceae. Pollen marphology supports such separation. In Ranunculaceae most pollen grains are tricolpate or have other types of aperture, and exine with spinules and perforations between them. In electron microscopy, the ektexine contains a foot layer, columellae, and perforate rectum, the columellar layer with two types of columellae; the endexine is generally thin. However, the columellar layer of Paeonia has only monomorphic columellae. Some authors considered that there is a close relationship between Paeonia and the Dilleniaceae, but these also differ in the characters of the pollen grains. In Paeonia the constriction of the colpus in equator is in some degree similar to that of Theaceae (Camellia sasanqua Thunb.), Guttiferae (Hypericum L.), Actinidiaceae and Rosaceae. But in the other respects they are quite different. In sum, the pollen morphology of Paeonia is unique. So the palynological information supports Takhtajan's view that Paeonia should be elevated to a family (Paeoniaceae) or order (Paeoniales).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号