首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ability of microspores to undergo embryo development after a successful induction treatment provides a unique experimental system to study a variety of developmental processes in plants. Recent published results focus on the cellular and molecular aspects of the early induction process. In this review, besides summarizing the current findings, the advantages of using the MDE system to study other aspects of embryo development are emphasized. The continual improvement of culturing procedures, media components, and molecular methods guarantees exciting new findings in the near future.  相似文献   

2.
Several lines of evidence suggest that homeotic changes played a considerable role during the evolution of flowers. This, however, is difficult to reconcile with the predominant evolutionary theory which rejects any drastic, saltational change of the phenotype as reasonable mode of evolution due to its assumed negative impact on the fitness of the affected organism. A better understanding of the evolutionary potential of homeotic transitions requires a study of the performance of respective mutant varieties in the wild. Here we introduce ``Stamenoid petals' (Spe), a variety of Capsella bursa-pastoris (shepherd's purse), as a suitable model to study the evolutionary potential of floral homeotic mutants. In the flowers of the Spe variety all petals are transformed into stamens, while all other floral organs are unaffected. In contrast to most other homeotic mutants the Spe variety occurs on several locations in relatively large and stable populations in the wild. Due to its close relationship to the model plant Arabidopsis thaliana, the Spe variety of C. bursa-pastoris can be rigorously studied, from the molecular genetic basis of the phenotype to its consequences on the fitness in wild habitats. Investigations on Spe may thus help to clarify whether homeotic transformations have the potential to contribute to macroevolution.  相似文献   

3.
Modern herbicides greatly contribute to world agricultural production but their sustainability is threatened by the widespread evolution of herbicide resistant weedy plant populations. Despite the commercial and scientific importance of resistance, there has not been an experimental model system for pro-actively evaluating the potential for herbicide resistance evolution. Here, utilizing the rapidly growing, unicellular photosynthetic microalgae Chlamydomona s reinhardtii (Dangeard), a ratchet protocol has been developed that solves the problem of maintaining both large populations and strong herbicide selection. The ratchet protocol is a progressive set of cycles, each cycle commencing with a population of approximately one million individuals apportioned amongst three herbicide doses for 14 days. Whenever the evolving population demonstrates growth across the three herbicide selection intensities, then the population ratchets to the next cycle of higher herbicide dose. Therefore, by always maintaining large populations under selection pressure, this system offers the opportunity for beneficial mutations to arise and be enriched. Using the well-characterized atrazine herbicide, the ratchet protocol resulted in rapid evolution of populations with different levels of resistance. This robust laboratory based Chlamydomonas system is proposed for application in establishing the respective propensity for resistance evolution to herbicides or other selecting agents.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 257–266.  相似文献   

4.
The aim of this study was to investigate the toxic effects of aluminum (A1) on the model organism-Drosophila melanogaster. The study is especially concerned with the effects of aluminum on the fruit fly's development, life span, and circadian rhythm in rest and activity. Flies were exposed to aluminum in concentrations from 40 to 280 mg/kg in rearing media or the flies were raised on control medium. Moreover, the life span of insects exposed to aluminum containing 40, 120, or 240 mg/kg of A1 in the medium, only during their larval development, during the whole life cycle and only in their adult life was tested. To check if aluminum and aging cause changes in D. melanogaster behavior, the locomotor activity of flies at different ages was recorded. Results showed that aluminum is toxic in concentrations above 160 mg/kg in the rearing medium. Depending on A1 concentration and time of exposure, the life span of the flies was shortened. At intermediate concentrations (120 mg/kg), however, A1 had a stimulating effect on males increasing their life span and level of locomotor activity. At higher concentration the aluminum exposure increased or decreased the level of locomotor activity ofD. melanogaster depending on age of flies. In addition, in the oldest insects reared on aluminum supplemented media and in mid-aged flies reared on the highest concentration of A1 the daily rhythm of activity was disrupted.  相似文献   

5.
The flavor deterioration of mayonnaise is induced by iron, which is released from egg yolk phosvitin under acidic conditions and promotes lipid oxidation. To prevent oxidative deterioration, natural components, rather than synthetic chemicals such as ethylenediaminetetraacetic acid have been required by consumers. In the present study, we evaluated the inhibitory effects of three egg white components with the same amino acid composition, namely egg white protein, hydrolysate, and the amino acid mixture, on lipid oxidation in mayonnaise and an acidic egg yolk solution as a model system. We found that the hydrolysate had the strongest inhibitory effect on lipid oxidation among the three components. The mechanism underlying the antioxidant effect was associated with Fe2+-chelating activity. Thus, egg white hydrolysate may have the potential as natural inhibitors of lipid oxidation in mayonnaise.  相似文献   

6.
An increasing number of genes are being identified for which the corresponding mRNAs contain different combinations of the encoded exons. This highly regulated exon choice, or alternative splicing, is often tissue-specific and potentially could differentially affect cellular functions. Alternative splicing is therefore not only a means to increase the coding capacity of the genome, but also to regulate gene expression during differentiation or development. To both evaluate the importance for cellular functions and define the regulatory pathways of alternative splicing, it is necessary to progress from the in vitro or ex vivo experimental models actually used towards in vivo whole-animal studies. We present here the amphibian, Xenopus, as an experimental model highly amenable for such studies. The various experimental approaches that can be used with Xenopus oocytes and embryos to characterize regulatory sequence elements and factors are presented and the advantages and drawbacks of these approaches are discussed. Finally, the real possibilities for large-scale identification of mRNAs containing alternatively spliced exons, the tissue-specific patterns of exon usage and the way in which these patterns are modified by perturbing the relative amount of splicing factors are discussed.  相似文献   

7.
The fern gametophyte is a good model system for studying cell biological, physiological, and photobiological aspects of the fundamental processes of plant development and physiological phenomena, because of its autotrophic characteristics and its simple structure. The cells, moreover, are not surrounded by tissue, so observation and manipulation of the cells are very easy. Here I summarize a part of my knowledge of fern systems, which I have studied for nearly 40 years. Masamitsu Wada is the recipient of the BSJ Research Award for 2004.  相似文献   

8.
As scientists it is our duty to fight against obscurantism and loss of rational thinking if we want politicians and citizens to freely make the most intelligent choices for the future generations. With that aim, the scientific education and training of young students is an obvious and urgent necessity. We claim here that Hydra provides a highly versatile but cheap model organism to study biology at any age. Teachers of biology have the unenviable task of motivating young people, who with many other motivations that are quite valid, nevertheless must be guided along a path congruent with a 'syllabus' or a 'curriculum'. The biology of Hydra spans the history of biology as an experimental science from Trembley's first manipulations designed to determine if the green polyp he found was plant or animal to the dissection of the molecular cascades underpinning, regeneration, wound healing, stemness, aging and cancer. It is described here in terms designed to elicit its wider use in classrooms. Simple lessons are outlined in sufficient detail for beginners to enter the world of 'Hydra biology'. Protocols start with the simplest observations to experiments that have been pretested with students in the USA and in Europe. The lessons are practical and can be used to bring 'life', but also rational thinking into the study of life for the teachers of students from elementary school through early university.  相似文献   

9.
10.
The ovule primordium of Costus is trizonate and both its integuments are dermally initiated. With other evidence, this strongly suggests that most, if not all, monocotyledons have dermally initiated integuments, indicating a derived status. The mature seed coat of Costus is completely formed by the outer integument and its principal mechanical layer is the endotesta.
The seed of Costus has an aril, an operculum and a micropylar collar. These structures, characteristic of zingiberalean seeds, are each initiated in a different, specific cell layer of the exostome. The aril is completely dermally initiated. The parenchymatic part of the operculum and the micropylar collar are of dual origin, namely dermal at me integumentary region and subdermal at the raphe.  相似文献   

11.
The conserved oligomeric Golgi (COG) complex is an octameric protein complex associated with the Golgi apparatus and is required for proper sorting and glycosylation of Golgi resident enzymes and secreted proteins. Although COG complex function has been extensively studied at the cellular and subcellular levels, its role in animal development mostly remains unknown. Recently, mutations in the components of the COG complex were found to cause abnormal gonad morphogenesis in Caenorhabditis elegans. In C. elegans, the COG complex acts in the glycosylation of an ADAM (a disintegrin and metalloprotease) family protein, MIG-17, which directs migration of gonadal distal tip cells to lead gonad morphogenesis. This is the first link between the COG complex and the function of an ADAM protease that is directly involved in organ morphogenesis, demonstrating the potential of C. elegans as a model system to study COG function in animal development.  相似文献   

12.
A rich body of theory on the evolution of virulence (disease severity) attempts to predict the conditions that cause parasites to harm their hosts, and a central assumption to many of these models is that the relative virulence of pathogen strains is stable across a range of host types. In contrast, a largely nonoverlapping body of theory on coevolution assumes that the fitness effects of parasites on hosts is not stable across host genotype, but instead depends on host genotype by parasite genotype interactions. If such genetic interactions largely determine virulence, it becomes difficult to predict the strength and direction of selection on virulence. In this study, we tested for host-by-parasite interactions in a medically relevant vertebrate disease model: the rodent malaria parasite Plasmodium chabaudi in laboratory mice. We found that parasite and particularly host main effects explained most of the variance in virulence (anaemia and weight loss), resistance (parasite burden) and transmission potential. Host-by-parasite interactions were of limited influence, but nevertheless had significant effects. This raises the possibility that host heterogeneity may affect the rate of any parasite response to selection on virulence. This study of rodent malaria is one of the first tests for host-by-parasite interactions in any vertebrate disease; host-by-parasite interactions typical of those assumed in coevolutionary models were present, but were by no means pervasive.  相似文献   

13.
14.
Neisseria gonorrhoeae has a rising trend of resistance against antimicrobials. Today, third generation cephalosporins are the only antibiotics for treatment of gonorrhea against which there is no resistance in gonococci. On the other hand, decreased susceptibility against this group, including ceftriaxone, has already been observed. This historically famous pathogen deserves current attention and is reviewed here with respect to its resistance mechanisms and patterns, and the problems concerning standardization of its susceptibility testing are discussed.  相似文献   

15.
16.
17.
Translocations, deletions, and chromosome fusions are frequent events seen in cancers with genome instability. Here we analyzed 358 genome rearrangements generated in Saccharomyces cerevisiae selected by the loss of the nonessential terminal segment of chromosome V. The rearrangements appeared to be generated by both nonhomologous end joining and homologous recombination and targeted all chromosomes. Fifteen percent of the rearrangements occurred independently more than once. High levels of specific classes of rearrangements were isolated from strains with specific mutations: translocations to Ty elements were increased in telomerase-defective mutants, potential dicentric translocations and dicentric isochromosomes were associated with cell cycle checkpoint defects, chromosome fusions were frequent in strains with both telomerase and cell cycle checkpoint defects, and translocations to homolog genes were seen in strains with defects allowing homoeologous recombination. An analysis of human cancer-associated rearrangements revealed parallels to the effects that strain genotypes have on classes of rearrangement in S. cerevisiae.  相似文献   

18.
李礼  罗凌飞 《遗传》2013,35(4):421-432
斑马鱼因其受精卵体外发育、胚胎透明、具有较强的再生能力以及适于大规模遗传筛选的优势, 成为研究脊椎动物器官发育与再生的新兴模式动物。通过数十年的探索, 科研工作者已经在斑马鱼中建立了一套成熟的研究方法, 并对斑马鱼胚胎发育早期的细胞命运决定和分化、组织器官的形态建成以及受损后的再生过程有了初步的认识。近年来, 随着遗传筛选技术的大规模开展和活体成像技术在斑马鱼中的深入应用, 许多在小鼠等模式动物中悬而未决的问题开始得到充分解答。随着研究的不断深化和技术的不断更新, 以斑马鱼为模式动物, 对脊椎动物器官发育与再生的研究将会更加深入, 相关的调控机制也会被逐步探明, 从而为临床相关疾病的防治提供富有价值的参考。文章通过对近年来发表的文章进行回顾, 总结了斑马鱼作为模式动物研究中枢神经系统、肝脏和胰腺、血液细胞和血管等重要器官早期发育过程及其调控机制的进展, 并阐述了以斑马鱼研究尾鳍、心脏、肝脏等器官再生的优势和初步发现。  相似文献   

19.
Cerebrovascular amyloidosis belongs to the pathological hallmarks of Alzheimer's disease brains. Although definite proof is still lacking, it is very well possible that the amyloid and its associated proteins are produced locally in the brain. In this paper we describe the development of a model system of cultured human brain pericytes to study the mechanisms of microvascular amyloid formation in vitro. These cultured cells may serve to study several aspects of cerebrovascular amyloidosis, which include the production of the amyloid precursor protein and of amyloid beta-protein-associated proteins as well as cytotoxic effects of amyloid beta-protein on perivascular cells. We demonstrated that pericytes produce and metabolize the amyloid precursor protein, and that they produce amyloid beta-protein-associated proteins, such as heparan sulfate proteoglycans, apolipoprotein E, and complement factor C1q. They are also prone to cellular degeneration after treatment with amyloid beta-protein, which is accompanied by increased expression of a number of amyloid beta-protein-associated proteins. This may be an important mechanism to explain the cell death observed in vivo. Our data indicate that this cell culture model of human brain pericytes provides a useful and pathophysiologically relevant tool to study cerebrovascular amyloidosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号