首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscin threads and other pollen connecting threads of some angiosperm families were investigated, especially those ofEricaceae. According to the definition adopted, viscin threads are ± long exinous processes which consist of exinous material and connect pollen grains or tetrads. Such viscin threads are found within theOnagraceae, Caesalpiniaceae, Ericaceae, andMimosaceae only. While they differ in structure and composition, they always consist of sporopollenin and exhibit a very strong stickiness, even after all viscid substances have been removed by acetolysis. In contrast, the pollen connecting scleroprotein threads ofOrchidaceae and the cellular threads ofStrelitzia reginae Aiton. (Musaceae) are not connected with the exine surface, are destroyed by acetolysis, and thus do not correspond to viscin threads.
  相似文献   

2.
Summary The history of chromonemata was studied in Dissosteira Carolina L. It was found that each chromosome consists of 2 chromatids at all stages which themselves are again split into half-chromatids or chromonemata proper.Multiplication of threads is believed to occur at metaphase, the cycle being strictly analogous to that of plants with large chromosomes such as Trillium, Tradescantia, Hordeum and Secale, especially the two latter. Four threads per chromosome were observed during the last premeiotic telophase, during diaphase and diakinesis. During leptotene only 2 threads can be seen because the chromosome attenuates so much that half-chromatids can no longer be resolved. The dyad chromosome contains 8 threads which were observed in first telophase and interkinesis. The chromosome of the second anaphase contains four threads again, as the threads do not multiply during the second metaphase.The chromosome threads in Dissosteira Carolina L. are not so easily fixed as those of large plant chromosomes. The resulting images are more diffuse and less obvious, nevertheless the evidence obtainable appears cogent.Approved by the Director of the New York State Agricultural Experiment Station as Journal Paper 160, August 20, 1936.  相似文献   

3.
Under SEM the silk weave in the snail-like cases of Helicopsyche crispata and H. shuttleworthi, the two species present in Italy consist of several types of meshes. The silk which connects the sand grains of the external wall is made up of multi-layered threads forming irregular meshes. The sand grains of the vertical pillars in the wall of the centr al columella are held together by very loosely woven silk and are supported by thick silken threads. The pupal silken membrane consists of concentric threads and the pupal case is attached to the substrate by a disordered mass of silken threads. The two glands which secrete the silk are long, double folded tubes.  相似文献   

4.
InHeliconia thread-like structures connecting the pollen grains are described. These threads are decay products of the walls separating the pollen chambers, and products of the rupture of the mature anthers in the stomium region. The pliable cell threads mix with the pollen and entangle individual grains to form aggregates. This ensures that the pollen becomes embedded in the feathers or attached to the smooth, unsculptured beak of pollinating hummingbirds (Trochilidae).—Structure and origin of theHeliconia threads differ from those of the related genusStrelitzia (Strelitziaceae).  相似文献   

5.
Summary The spinning apparatus ofLinyphia triangularis, adult females and males, was studied with the scanning electron microscope and the main anatomical and histochemical characteristics of the silk glands, including the epigastric apparatus of males, are presented. The epigastric glands seem to be important for the construction of sperm webs. A detailed account of the use of the different kinds of silk in web building is given.The spinning apparatus ofLinyphia closely corresponds to the araneid pattern. Characteristic of linyphiid spiders is the poor development of the aciniform glands. Corresponding to the minor importance of capture threads forLinyphia, the triads (aggregate and flagelliform glands) are less developed than in Araneidae.Linyphia make much less use of the secretions of the piriform glands for connecting threads than Araneidae. Capture threads adhere to other threads by their own glue; other threads seem mostly to be bound to one another by the secretion of the minor ampullate glands whose chemical properties, inLinyphia, appear especially adapted to this function. Neither the anatomical and histochemical data concerning the spinning apparatus nor the structure of the webs provide any indication of close relationships between Linyphiidae and Agelenidae, as was recently claimed.  相似文献   

6.
As it walks, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) spins a trail of silk threads, that is followed by the predatory mite, Neoseiulus womersleyi Schicha (Acari: Phytoseiidae). Starved adult female N. womersleyi followed T. urticae trails laid down by five T. urticae females but did not follow a trail of one T. urticae female, suggesting that the amount of spun threads and their chemical components should correlate positively with the number of T. urticae individuals. To examine whether chemical components of T. urticae trails are responsible for the predatory mite’s trail following, we collected separate T. urticae threads from the exuviae and eggs, and then washed the threads with methanol to separate chemical components from physical attributes of the threads. Female N. womersleyi did not follow T. urticae trails that had been washed with methanol but contained physical residues, but they did follow the direction to which the methanol extracts of the T. urticae trails was applied. These results suggest that the predatory mite follows chemical, not physical, attributes of T. urticae trails.  相似文献   

7.

The nucleus of some representatives of the genus Pelomyxa (Amoebozoa, Archamoebae, Pelobiontida) contains specific bodies (membrane-less organelles). They may be either embedded in the nucleolar mass or detached from the nucleolus. We termed these nuclear bodies the glomerulosomes for their characteristic ultrastructural appearance. The glomerulosomes are distinct nuclear bodies, about 1 μm in diameter. The morphological and diagnostic unit of a glomerulosome is an electron-dense thread/string, about 30–40 nm in thickness. These threads are not direct continuation of the nucleolar material. The threads create the unique geometric appearance of the glomerulosome by being organized into precisely parallel rows/cords. Each cord of the threads can curve at different angles within the glomerulosome body, but the threads themselves are not coiled. Nowadays, the glomerulosomes have been discovered in P. palustris, P. stagnalis, P. paradoxa, and Pelomyxa sp. Despite the unique appearance of glomerulosomes, their existence may be a more common phenomenon in eukaryotic cells than just a specific feature of the nucleus of elected pelomyxes.

  相似文献   

8.
Exine development in pollen of Caesalpinia japonica was studied using high resolution scanning electron microscopy, with attention to the initial developmental process of protectum formation and composition. The protectum is originated on the protuberant sites of the invaginated plasma membrane during the early tetrad stage. The present study shows that the initial protectum is composed of irregularly oriented fibrous threads. The fibrous threads accumulate and form a network on the plasma membrane. Granules 10–20 nm in diameter gradually aggregate within the network of fibrous threads during the tetrad stage. Subsequently the fibrous threads are almost masked by the granules. The developing protectum has a coarse texture within the callosic tetrad envelope. At the free microspore stage the granular protectum becomes homogeneous. The present study suggests that the protectum consists of an association of fibrous threads and granules. The fibrous threads may function as receptors and/or the skeleton of the developing exine.  相似文献   

9.
The ability to attach repeatedly to a substrate (glass, boulders, sand) in three common mussel species of the upper sublittoral zone of the Sea of Japan, Grayan's mussel Crenomytilus grayanus, the Korean mussel Mytilus coruscus, and northern horse mussel Modiolus modiolus, was studied under experimental conditions. It was found that during 120 h of the experiment C. grayanus and M. modiolus produced more byssal threads than M. coruscus. A decrease in the water temperature from 20 to 0°C slowed the rate of production of byssal threads down to full passivity in some experimental mollusks. This was more typical of M. coruscus and less typical of C. grayanus. Renewed threads differed in their length, thick, size of the adhesive plate, and strength. M. coruscus formed the shortest, thickest, and strongest threads with rather a large adhesive disk. The observed differences are discussed from the position of morphophysiological adaptations of species for colonization of different natural substrata under contrasting conditions of the upper sublittoral zone.  相似文献   

10.
The elemental composition of byssal threads from two freshwater mussels Dreissena polymorpha (zebra) and Dreissena bugensis (quagga) has been determined by proton-induced X-ray emission spectroscopy. Sulphur and manganese are present at 30–100-fold higher concentrations in the threads than in ambient waters of Lake Erie. Calcium, phosphorus and copper levels are also somewhat enhanced in byssus. Since dreissenid byssus is not mineralized, Mn may be organometallically complexed to the functional side chains of byssal proteins.  相似文献   

11.
Summary The mode of infection leading to nodulation was studied in soybean (Glycine max) plants inoculated withRhizobium japonicum strains 61A76, 3I1b83, 3Ilb142, and 3Ilb143 and a commercial inoculum. Infection threads were noticed in the root hairs of plants grown in small field plots, Leonard bottle-jar assemblies and on agar slants. Two infection threads per root hair were commonly observed. Root hairs with infection threads were persistent on the nodules. The maximum number of infection threads per plant was observed in Leonard bottle-jar assemblies.Contribution No. 603 from Charles F. Kettering Research Laboratory.  相似文献   

12.
Summary The spinnerets and spigots of two adult femaleDeinopis subrufus and one adult male were studied with the scanning electron microscope. The organization of the spinning apparatus corresponds very closely to that of Uloboridae. The capture threads produced by the male while subadult were studied with the light microscope and with the SEM. This study includes the questions of the glandular origin and the functions of the components of these threads. A hypothesis for howD. subrufus constructs capture threads is proposed.  相似文献   

13.
The morphology of the shell and byssus threads was studied in two closely related mussel species Crenomytilus grayanus and Mytilus coruscus. The two species differ significantly from each other in the shell shape and in the degrees of development and deformation of byssus threads. These differences, in turn, determine (either directly or indirectly) the differences in strength of the byssal attachment and are discussed in terms of their functional morphology with respect to the spatial distribution of the mussels in marine coastal zones.  相似文献   

14.
The interface between the host cell and the microsymbiont is an important zone for development and differentiation during consecutive stages of Rhizobium-legume symbiosis. Legume root nodule extensins, otherwise known as arabinogalactan protein-extensins (AGPEs) are abundant components of infection thread matrix. We have characterized the origin and distribution of these glycoproteins at the symbiotic interface of root nodules of symbiotically defective mutants of pea (Pisum sativum L.) by using immunogold localization with MAC265 an anti-AGPE monoclonal antibody. For mutants with defective growth of infection threads, the AGPE epitope was abundant in the extracellular matrix surrounding infected host cells in the central infected tissue of the nodule, as well as in the lumen of Rhizobiuminduced infection threads. This seems to indicate a mistargeting of AGPE as a consequence of abnormal growth of the infection threads. Furthermore, mutants in the gene sym33 showed reduced labeling with MAC265 and, in some infection threads and droplets, the label was completely absent, a phenomenon that is not observed in wild-type nodules. This suggests an alteration in the composition of the infection thread matrix for sym33 mutants, which may be correlated to the absence of endocytosis of rhizobia into the host cytoplasm.  相似文献   

15.
Laboratory experiments showed that the mussel Mytilus edulis aggregated more intensely around living organisms (the bivalve Hiatella arctica and the solitary ascidian Styela rustica, which commonly co‐occur with mussels in fouling communities) than around inanimate objects. When exposed to an inanimate object, mussels attached their byssal threads primarily to the substrate, close to the object, but when exposed to a living organism, they attached their byssal threads directly to the organism. The ascidian was more intensely covered with byssal threads than was the bivalve. Mussel attachment to the ascidians was apparently determined by the physical characteristics of the tunic and to a lesser extent by the excretion‐secretion products released by S. rustica. This study indicates that mussels can use byssus threads as a means of entrapment of potential competitors for space. It remains unclear why mussels preferentially attached to ascidians compared to the bivalve. This can be explained either by competitive interactions, or by attractiveness of the ascidian tunic as an attachment substratum.  相似文献   

16.
This paper reviews the origin, nature, systematic distribution, and the respective function of the highly variable and diverse thread-forming structures in angiosperm anthers (including somewhat similar, rare features in ferns and gymnosperms). On one hand, such threads may function as pollen-connecting vectors in forming pollen dispersal units, as sporopollenin threads (viscin threads), e.g. in Onagraceae, or sporopollenin-less threads in surprisingly many other angiosperm families. On the other hand, as is known from theImpatiens — pollen basket, threads or ropes may be involved in pollen presentation. In addition, for the first time two new examples of pollen baskets in Boraginaceae and Scrophulariaceae are reported. InEchium the basket is formed by cellular elements from the modified septal regions, whereas inEsterhazya a similar effect is achieved in an analogous manner by trichomes of the epidermal layer of the thecal wall. There is obviously a different function of these seemingly very similar baskets: inEchium the feature acts preferably as a pollen presentation agent, whereas inEsterhazya the primary function is to prevent all the pollen from being dispersed too soon.  相似文献   

17.
Tetranychus urticae (Acari: Tetranychidae) is a phytophagous mite that forms huge colonies. All active members of a colony (immatures and matures, females and males) spin silken threads. These mites construct a common web that protects the colony from external aggression. The silk coverage is well-known to provide advantages to the colony but very little is known about the characteristics of the threads themselves. Here is the first quantification of the diameter of silken threads spun by two different stages (adult females and larvae) and its relationship with body size of the spinning individuals. Moreover, we observed how silk was deposited on the substrate through their two pedipalps. Threads were observed by means of transmission electron and fluorescence microscopy. Silken threads spun by larvae (0.055 ± 0.018 μm) were significantly thinner than threads spun by adult females (0.111 ± 0.038 μm). In the first step of the silk depositing behaviour, the mite attached the thread to the substrate by putting its pedipalps in contact with the surface (adhesion, double silken threads). When walking, silken threads became detached from the substrate and spitted up (silken threads were free). Finally, silken threads adhered to the surface. The presence of single and double threads makes thread diameter highly variable.  相似文献   

18.
Polyethylenimine(PEI)-coated cotton threads were shown to have potential for reducing microbial load from a flowing suspension. Turbid cell suspensions perfused through the PEI column appeared as totally clear in the effluent. The adhesion efficiency of the matrix was found to depend on the concentration of PEI used to treat the threads. Threads coated with 2.5% PEI were found to show optimal retention of cells. A considerable amount of binding was seen over a broad range of ionic concentration (0–0.3 M) and pH (3.6–10.3). Under similar conditions control threads did not show any filtration capacity. Saccharomyces cerevisiae, Saccharomyces fragilis, Escherichia coli and an Acetobacter species could be effectively filtered using PEI-coated threads. This technique can find potential for the simultaneous filtration and immobilization of cells in a bioreactor to be used in continuous bioprocessing as exemplified for the inversion of sucrose syrups using baker's yeast. The bioreactor could continuously hydrolyse 60% (w/v) sucrose syrups with a productivity of 2.25 kg/day for over a month without loss in efficiency.  相似文献   

19.
Summary Pretensile forces were measured in individual threads of intact spider webs. In the orb web of Araneus diadematus forces decrease from mooring threads to frame threads and radii, a typical ratio being 1071. The smaller number of radii in the upper than in the lower half of the orb is paralleled by force ratios of 21 to 31. A similar difference between radii built first during web construction and radii added after completion of the frame underlines the importance of the former as part of the scaffolding. High tensions in the auxiliary spiral stabilize the radii in addition to providing a pathway for the spider when inserting the sticky spiral. Radial pretension (F) changes with spider mass (m). F/m is similar for different animals indicating an adaptation of radial forces to those resulting from spider mass. Several observations suggest tension control by the spider. When forced to anchor its web to thin flexible rods tension in the threads remains in the normal range. Tension values are similar in the webs of A. diadematus, Zygiella x-notata, Nuctenea umbratica, and Nephila clavipes indicating independence from details of web geometry. Only the mooring threads of Nephila show unusually large forces suggesting a narrower working range of tensions for the catching area than for the scaffolding.  相似文献   

20.
Nod factors of Rhizobium are a key to the legume door   总被引:7,自引:3,他引:4  
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号