首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies were conducted to determine the influence of temperature and relative humidity (RH) on germinability and viability of Mucor piriformis spores. Spores did not survive when stored at 35 °C and their survival rate decreased rapidly at 30 °C; however, spores remained viable for more than 1 year at 0 °C. RH also significantly affected spore viability. Spores held at 26 °C and 100% RH no longer germinated after 35 days, while those held at 75 or 90% RH germinated for 65 days. At 20 °C, RH had little effect on spore germinability. The effect of temperature and RH on percentage spore germination also varied. At all temperatures studied, spore viability decreased more rapidly with time at 100% RH than at 75 or 90% RH. The least favorable, temperature-humidity combination, 30 °C and 100% RH, decreased spore germination from 100% to less than 1% in 14 days.  相似文献   

2.
Unformulated conidia of Beauveria bassiana were stored at five different temperatures (0°, 10°, 20°, 30° and 40°C) at six different relative humidities (RH) (0, 33, 53, 75, 85 and 98%). Conidial viabilities and virulence against third instar larvae of Helicoverpa armigera were determined over a 24‐month period. Conidia survived longest at lower temperatures (0–20°C) and lower RH levels (0–53% RH). At higher temperatures (30–40°C) conidia did not survive. When the temperature was decreased from 30°C to 0°C, at nearly all RH levels the longevity of conidia increased. Conidia remained virulent for third instar larvae of H. armigera under favourable storage conditions for 24 months.  相似文献   

3.
A recording volumetric spore trap was operated continuously amidst overwintered grape leaves in a vineyard at Walenstadt, Switzerland from early May to mid-July 1988. Ascospores of Pseudopezicula tracheiphila were captured in the air beginning 11 May and 96 % of the total seasonal release occurred between 16 May and 2 June. Rain always preceded ascospore release. However, trap catches were associated with the simulataneous cessation of rainfall, decreased relative humidity (RH), increased temperature, and drying of foliage. Maximum ascospore release occurred in the second hour, following commencement of drying. Ascospores discharged dry onto glass coverslips survived with greater than 60 % viability after 1, 3, and 6 days exposure to 10, 15, 20, and 25°C at 70 % RH. Only at 30°C was viability reduced to slightly less than 50 % after 6 days.  相似文献   

4.
The aim of this study was to investigate under a controlled environment, the effect of temperature on the survival and infectivity of Pseudotheraptus devastans Distant, a cassava anthracnose disease vector. The insect P. devastans was collected from young cassava (Manihot esculenta Crantz) field plots, at the International Institute of Tropical Agriculture, (IITA), Ibadan, Nigeria. A mixture of the different developmental stages of eggs, first to fifth instar nymphs, and adults, were incubated in controlled environment chambers, under various constant temperatures of: 15, 17, 22, 25, 27, 30, and 35°C. Relative humidity at different temperature conditions were recorded and maintained at 90%, 85%, 80%, 75%, 70%, 65%, and 60%, respectively. A significant increase in insect survival was observed between 22 and 27°C temperature conditions while a significant decrease in survival was observed at 15°C and above 30°C. Lesion number, lesion diameter and infectivity among the insect stages varied as a function of temperature and relative humidity. Infectivity was highest at 22–25°C maintained at 75–80% RH and lowest at 15°C and above 30°C maintained respectively, at 65% RH and 90% RH. There was considerable low vector infectivity due to low survival of the insects at extreme temperatures.  相似文献   

5.
Studies on biology of Oligonychus mangiferus (Rahman and Sapra) at combination of eight constant temperatures and relative humidities (RHs) viz., 7.0°C with 85% RH, 10°C with 80% RH, 15.0°C with 75% RH, 23.0°C with 70% RH, 31.0°C with 65% RH, 34.0°C with 65% RH, 36.0°C with 60% RH and 40.0°C with 55% RH revealed that the optimal condition for the development of these mites are 15.0–31.0°C and 65–75% RH. The highest temperature and the lowest RH accelerated the rate of development and induced more reproduction of O. mangiferus. Its population also multiplied 30.81 times in a generation time of 27.36 days at 31.0°C and 65% RH, while the same population only increased 7.46 times in a generation time of 48.07 days at 15.0°C and 75% RH. Fecundity was highest at 31.0°C and 65% RH with 46.43 eggs per female. The highest intrinsic rate of natural increase was observed at 31.0°C as 0.125 per day.  相似文献   

6.
Anthocoris minki Dohrn is a promising indigenous Anthocoris species for the biological control of Agonoscena pistaciae Burck. and Laut. (Homoptera: Psyllidae) in pistachio orchards in Turkey. The adult longevity, fecundity, life table parameters and prey consumption of A. minki fed on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs were studied at combinations of three constant temperatures (20, 25 and 30 ± 1°C) with two relative humidity (RH) levels (40 and 65 ± 5%). Studies indicated that temperature and RH significantly affected adult longevity, fecundity and prey consumption of A. minki. The greatest adult female longevity was 116.0 days at 20°C and 65% RH; the shortest adult female longevity was 27.5 days at 30°C and 40% RH. At all tested temperatures, the oviposition period and prey consumption of both females and males significantly decreased at low RH compared to high RH. The highest and lowest total fecundities were 276.0 eggs (at 20°C and 65% RH) and 42.4 eggs (at 25°C and 40% RH), respectively. The intrinsic rates of natural increase (r m) at 40 and 65% RH were 0.049 and 0.076 at 20°C, 0.072 and 0.096 at 25°C and 0.076 and 0.112 at 30°C, respectively. The highest mean numbers of E. kuehniella eggs consumed by females and males were 859.6 (at 20°C) and 515.3 (at 25°C) at 65% RH, respectively; the lowest were 183.3 (at 20°C) and 95.5 (at 25°C) at 40% RH, respectively.  相似文献   

7.
Spore survival and moisture content are two important properties of biopesticides, and both are related to field biocontrol efficacy and storage shelf life. In this study, Paenibacillus polymyxa (HY96-2) was spray-dried on both pilot plant and production scales, and the effects of inlet and outlet temperatures on spore survival and moisture content were investigated. The results showed that inlet temperatures ranging from 170 to 230 °C (at an outlet temperature of 80 °C) had no obvious effect on the two properties during pilot scale processing, although an inlet temperature of 230 °C resulted in higher feed speed. When the outlet temperature on the pilot scale was reduced from 100 to 80 °C, no obvious variations in spore survival and moisture content were found, while a further reduction from 80 to 65 °C resulted in a decline in spore survival from 81.0 to 67.0% and an increase in moisture content from 2.3 to 31.7%. These results indicate that both outlet temperature and moisture content have an effect on spore survival. Optimum inlet and outlet temperatures for P. polymyxa processing were 230 °C and 85–90 °C on a production scale. Under these conditions, spore survival and moisture content were 83.5–86.6% and 2.73––4.12%, respectively.  相似文献   

8.
Germination and vigour of accelerated aged (AA) and naturally stored onion seeds were examined. Accelerated ageing was conducted at 40 °C and 100 % relative humidity (RH). Non aged seeds were stored for 34 months at 3 or 15 °C and 40, 60 or 90 % RH. To restore seed viability, stored and aged seeds were matriconditioned with Micro-Cel E. A distinct loss of germination was observed after 5 days of accelerated ageing. Naturally stored seeds maintained high viability for 34 months, when stored at 3 °C and 40, 60 and 90 % RH or at 15 °C and 40 %. An increase of RH to 60 and 90 % at 15 °C caused loss of germination and vigour. Matriconditioning improved germination and increased endogenic ethylene release and in vivo ACC oxidase activity of both aged and stored seeds.  相似文献   

9.
Abstract. The thermal preferences of Alaskozetes antarcticus (Acari, Cryptostigmata) and Cryptopygus antarcticus (Collembola, Isotomidae) were investigated over 6 h within a temperature gradient (?3 to +13 °C), under 100% relative humidity (RH) conditions. After 10 days of acclimation at ?2 or +11 °C, individual supercooling points (SCP) and thermopreferences were assessed, and compared with animals maintained for 10 days under fluctuating field conditions (?6 to +7 °C). Acclimation at ?2 °C lowered the mean SCP of both A. antarcticus (?24.2 ± 9.1) and C. antarcticus (?14.7 ± 7.7) compared to field samples (?19.0 ± 9.0 and ?10.7 ± 5.2, respectively). Acclimation at +11 °C increased A. antarcticus mean SCP values (?13.0 ± 8.5) relative to field samples, whereas those of C. antarcticus again decreased (?16.7 ± 9.1). Mites acclimated under field conditions or at +11 °C selected temperatures between ?3 and +1 °C. After acclimation at ?2 °C, both species preferred +1 to +5 °C. Cryptopygus antarcticus maintained under field conditions preferred +5 to +9 °C, whereas individuals acclimated at +11 °C selected +9 to +13 °C. For A. antarcticus, thermopreference was not influenced by its cold hardened state. The distribution of field specimens was further assessed within two combined temperature and humidity gradient systems: (i) 0–3 °C/12% RH, 3–6 °C/33% RH, 6–9 °C/75% RH and 9–12 °C/100% RH and (ii) 0–3 °C/100% RH, 3–6 °C/75% RH, 6–9 °C/33% RH and 9–12 °C/12% RH. In gradient (i), C. antarcticus distributed homogeneously, but, in gradient (ii), C. antarcticus preferred 0–3 °C/100% RH. Alaskozetes antarcticus selected temperatures between 0 and +6 °C regardless of RH conditions. Cryptopygus antarcticus appears better able than A. antarcticus to opportunistically utilize developmentally favourable thermal microclimates, when moisture availability is not restricted. The distribution of A. antarcticus appears more influenced by temperature, especially during regular freeze‐thaw transitions, when this species may select low temperature microhabitats to maintain a cold‐hardened state.  相似文献   

10.
The hygropreference of adult Onychiurus arcticus (Tullberg) was investigated over 2 h at 0, 10 and 20°C, along humidity gradients (12–98% RH) established using different salt solutions. At all temperatures O. arcticus preferred the highest humidity (98% RH). At 0 and 20°C, saturated conditions were preferred to 98% RH. The hygropreference of the mite Lauroppia translamellata (Willmann) was also assessed at 20°C, and no clear RH preference was observed. This species survived the loss of 24.9 ± 2.1% of its initial water content when held for 24 h at 20°C and 12% RH. A range of assays designed to eliminate the influence of thigmotactic behaviour and population clumping permit exclusion of these factors as being responsible for the observed results. The mean initial water content of O. arcticus samples (71.7 ± 10.9, 73.4 ± 4.0 and 73.8 ± 23.5% at 0, 10 and 20°C, respectively) did not differ significantly between temperatures, indicating that the results were not influenced by differences in initial hydrated state. The percentage water loss of individuals within the gradient increased with temperature, and differed significantly between regimes. The ecological significance of the observed humidity preferences are discussed.  相似文献   

11.
To control coconut leaf beetle, Brontispa longissima (Gestro), the pupal parasitoid Tetrastichus brontispae Ferrière was imported from Taiwan and its biology was studied in quarantine in Hainan, China. The parasitoid development includes an egg, three larval instars and three pupal stages. Its developmental time from egg to adult was 19.5±0.5 days under conditions of 24±2°C and 75±5% relative humidity (RH). Temperature had no effect on the sex ratio of offspring, but significantly affected the parasitism rate and reproduction. The parasitism rates were 98.07, 97.97 and 95.03% at 28, 24 and 20°C, respectively, whereas the parasitism rate was 52.18% at 18°C and 69.48% at 30°C, respectively. Furthermore, the parasitoids reared at 18 and 30°C produced fewer offspring than those at 20, 24 and 28°C, respectively. With the increase in temperature, developmental time decreased linearly from 46.19 days at 18°C to 17.10 days at 28°C. RH significantly influenced development, parasitism rate and the reproduction of T. brontispa. With the decrease of RH, developmental time increased from 22.94 days at 20% RH to 18.84 days at 95% RH. In contrast, parasitism rate and the number of offspring per female increased with the increase of RH. Though emergence rates between 50 and 95% RH were much higher than those between 20 and 35% RH, the sex ratios between 20 and 95% RH were not different. Photoperiod had no effect on parasitism, the number of offspring per female, emergence and the sex ratio of T. brontispae, but developmental time was significantly different for different photoperiods. Sucrose, honey and glucose significantly enhanced adult longevity, parasitism and the number of offspring per female of T. brontispae, but had no effect on the sex ratio and survival. Females of T. brontispae only parasitized fourth to fifth larval instars and 1–5-day-old pupae, but there was a significant difference in the number of offspring per female, development time, emergence and the sex ratio of offspring in different instars. These results showed that 1-day-old pupae, a temperature of 24–28°C and 65–95% RH were optimal for T. brontispae. These findings should be helpful in developing a production system to rear and release T. brontispae in large enough quantities to effectively control coconut leaf beetle.  相似文献   

12.
The green peach aphid, Myzus persicae, is a major pest worldwide. An examination of the impact of temperature, relative humidity (RH) and developmental stages of M. persicae on the efficacy of the whitefly mycoinsecticide Mycotal®, based on Lecanicillium muscarium and the effects of infection on aphid fecundity was evaluated under controlled conditions. Although this fungus can be grown at a broad range of temperatures (15–30°C), the optimum temperature for control of M. persicae ranged between 20 and 30°C. L. muscarium had high efficacy as a microbial control agent against M. persicae between 55% and 90% RH. Total mortality of aphids treated with different spore dosages of L. muscarium varied according to the developmental stage: adults, fourth and third instar nymphs proved more susceptible than first instar nymphs. Although the fungus did not affect the rate of nymph production, the reproductive period of aphids significantly decreased with increasing the spore dosage. Thus, total fecundity of treated aphids was 22.6 ± 1.1 and 31.6 ± 2.4 offspring per adult at the medium (644 ± viable spore/mm2) and low (330 ± 40 viable spore/mm2) dosages, compared with 45.7 ± 4.3 offspring per untreated aphid. The results suggest that L. muscarium has the potential as a biological control agent of M. persicae.  相似文献   

13.
Engineered materials to improve the shelf-life of desiccated microbial strains are needed for cost-effective bioaugmentation strategies. High temperatures and humidity of legume-growing regions challenge long-term cell stabilization at the desiccated state. A thermostable xeroprotectant core and hydrophobic water vapour barrier shell encapsulation technique was developed to protect desiccated cells from the environment. A trehalose core matrix increased the stability of desiccated Bradyrhizobium by three orders of magnitude over 20 days at 32°C and 50% relative humidity (RH) compared to buffer alone; however, the improvement was not deemed sufficient for a shelf-stable bioproduct. We tested common additives (skim milk, albumin, gelatin and dextran) to increase the glass transition temperature of the desiccated product to provide further stabilization. Albumin increased the glass transition temperature of the trehalose-based core by 40°C and stabilized desiccated Bradyrhizobium for 4 months during storage at high temperature (32°C) and moderate humidity (50% RH) with only 1 log loss of viability. Although the albumin-trehalose core provided exceptional protection against high temperature, it was ineffective at higher humidity conditions (75%). We therefore incorporated a paraffin shell, which protected desiccated cells against 75% RH providing proof of concept that core and shell encapsulation is an effective strategy to stabilize desiccated cells.  相似文献   

14.
The survival of the fungus Monilinia fructicola on fruit and inert surfaces at different temperatures (range: 0–30°C) and relative humidity (RH) (range: 60–100%) was investigated. M. fructicola conidia survived better on fruit than on inert surfaces. The viability reduction rate at 20°C and 60% RH was 1.2 and 5.8 days?1 on fruit and inert surfaces, respectively. Overall, on fruit surfaces, conidia viability was reduced at high temperatures and was longer at higher RH than at lower RH; in contrast, on inert surfaces, conidia viability was longer at only low temperatures. On fruit surfaces, at 0°C and 100% RH, conidia survived up to 35 days, and at 30°C and 60% RH, conidia survived up to 7 days. However, on inert surfaces at 20°C and 30°C, conidia lost their viability after 48 and 24 h, respectively. These results suggest that M. fructicola can remain viable in cold rooms for over 30 days on fruit surfaces or over 25 days on inert surfaces. Furthermore, under the orchard conditions during the growing season, conidia may remain viable for only 2–3 days on immature fruit surfaces before conidia will be unable to penetrate the host.  相似文献   

15.
In a moist chamber Pseudopeziza medicaginis ascospores infected alfalfa (Medi sativa L.) moderately to abundantly within 6–10 h at 10–20 °C and within a longer time-span outside this temperature range. Approximate limits of the range were 2.5 and 28 °C; no infection took place at 30 °C. At 14°C ascospores infected alfalfa abundantly at 98 %relative humidity (RH) and above, moderately at 97%, sparsely at 95 and 96%, but not at 94% and below. Ascospores were hydrophilic, germinating best at or near 100%, RH but did not germinate at or below 93 % RH. After infection was established, tiny leafspots became visible within 6–7 days at constant temperatures of 15–25°, 10 days of 10°C, 13 days of 5 °C, and 25 days of 2.5 °C. They failed to develop into normal size spots within 4 weeks at constant temperatures near 30 °C, or near 10 °C and lower. Temporary exposure of incipiently diseased plants 1–6 days to 30–38 °C adversely affected subsequent leafspot development at 20–24°C. Inhibition depended on temperature and on the extent of post-infection disease development.  相似文献   

16.
Fertility life table parameters were assessed for five populations (strains) of two Trichogramma species, T. embryophagum Hartig and T. principium Sugonyaev & Sorokina, collected from eggs of the carob moth Ectomyelois ceratoniae (Zeller) in Iranian pomegranate orchards. Four combinations of two constant temperatures (25°C, 30°C) and two relative humidity levels (50% RH, 70% RH) were used. The overall intrinsic rate of natural increase (rm) was significantly decreased with decreased relative humidity but was uninfluenced by temperature. The highest and lowest rm values were observed in T. embryophagum from Qum (0.34 ± 0.004) and T. embryophagum from Varamin (0.13 ± 0.01), respectively. Two‐way interaction analyses revealed that the strains had significantly different responses in their rm values at different temperatures and relative humidities. In general, rm values were significantly higher at 25°C and 70% RH than at 30°C and 50% RH. The Qum strain of T. embryophagum was the most promising candidate to be considered as a biocontrol agent against E. ceratoniae due to its high reproductive rate (0.27 ± 0.01) at conditions (30°C and 50% RH) similar to the actual climatic conditions in Iranian pomegranate orchards during the major part of the growing season.  相似文献   

17.
The effect of root-zone temperature on Phytophthora cryptogea root rot was studied in tomato cv. Counter grown under winter and summer conditions in rockwool culture. A nutrient temperature of 25°C resulted in increased root initiation and growth, higher in winter-grown than in summer-grown plants. Rhizosphere zoospore populations were greatly reduced at 25°C and above. Growth of P. cryptogea in vitro was optimal between 20°C and 25°C and completely suppressed at 30°C. Encystment was enhanced by increased temperatures above 20°C. Zoospore release in vitro occurred in cultures maintained at constant temperatures in the absence of the normal chilling stimulus. Optimal release was at 10°C; no zoospores were released at 30°C. Inoculated, winter-grown tomato plants maintained at 15°C developed acute aerial symptoms and died after 21 days. Comparable plants grown at a root-zone temperature of 25°C remained symptomless for the 3-months duration of the experiment. Summer-grown infected plants at the higher root temperature wilted but did not die. Enhanced temperature was ineffective as a curative treatment in summer-grown plants with established infection. Aerial symptoms of Phytophthora infection are seen as a function of the net amount of available healthy root. With high root zone temperatures this is determined by new root production and decreased inoculum and infection.  相似文献   

18.
Pseudomonas lurida strain M2RH3 (MTCC 9245) is a Gram negative, non spore forming, fluorescent bacterium isolated from a high altitude rhizospheric soil from the Uttarakhand Himalayas. The identity of the bacterium was arrived by sequencing of the 16S rRNA gene and subsequent phylogenetic analysis. It grew and exhibited plant growth promoting traits at 4, 15 and 30°C, under in vitro conditions. The expression of plant growth promoting (PGP) traits by the bacterium was highest at 30°C, with a proportionate reduction in PGP activity at lower temperatures. Determination of phosphate solubilization by the bacterium at three incubation temperatures revealed a steady increase in the soluble P levels across the incubation temperatures, coupled with a concomitant drop in the pH levels of the culture supernatant, till the 14th day of incubation. Seed bacterization with the isolate positively influenced the growth and nutrient uptake parameters of wheat seedlings cv. VL 804 in pot culture conditions at controlled cold growing temperature. This is an early report on the phosphate solubilization and plant growth promotion by Pseudomonas lurida, which is a relatively new species of the genus Pseudomonas and opens up a hitherto unknown facet of this bacterium.  相似文献   

19.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   

20.
Liu A  Wang B  Hamel C 《Mycorrhiza》2004,14(2):93-101
Temperature has a strong influence on the activity of living organisms. This study, involving two indoor experiments, evaluated the effects of root zone temperature (10, 15 and 23°C) on the formation and development of arbuscular mycorrhizae (AM). In the first trial, greenhouse-grown sorghum [Sorghum bicolor (L.) Moench] was either colonized by Glomus intraradices Schenck & Smith or left non-mycorrhizal. Root length, root and shoot weight and root colonization were measured after 5, 10 and 15 weeks of plant growth. Although suboptimal root zone temperatures reduced growth in both mycorrhizal and non-mycorrhizal plants, mycorrhizal plants were larger than non-mycorrhizal plants after 15 weeks at 15 and 23°C. At suboptimal root zone temperatures, mycorrhizal inoculation sometimes slightly reduced root development. AM colonization was more affected than root growth at suboptimal root zone temperatures. Colonization was markedly reduced at 15°C compared with 23°C, and almost completely inhibited at 10°C. The second experiment was conducted in vitro using transformed carrot (Daucus carota L.) roots supporting G. intraradices. Mycelium length and spore number were measured weekly for 15 weeks. Spore metabolic activity (iodonitrotetrazolium reduction), root length and percentage root colonization were measured after 15 weeks. G. intraradices sporulation was reduced at temperatures below 23°C, while spore metabolic activity was significantly reduced only at 10°C. Root length and in particular percentage colonization were decreased at suboptimal temperatures. A negative interaction between AM hyphal growth and root growth resulting in reduced probability of contact at suboptimal root zone temperatures is proposed to explain the greater reduction observed in root colonization than in root and hyphal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号