首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthracnose disease spreads within mango trees by water-borne conidia of Colletotrichum gloeosporioides var. minor. Conidia were produced in lesions on leaves, defoliated branch terminals, mummified inflorescences and flower bracts. Conidia were trapped from these sources in the orchard during periods when anthracnose disease was developing both in flush growth and in flowers. The majority of conidia were trapped from lesions in young leaves. Conidia were produced in the laboratory from acervuli in leaf lesions over a wide temperature range (10–30°C) both in wet and humid (95–97% r.h.) conditions. Conidia would be present for dispersal within the tree throughout the entire season. Large numbers of conidia were trapped during prolonged periods of rain, and when these occurred during active growth or flowering, severe outbreaks of disease were recorded. No conidia were trapped following dews. Ascospores of Glomerella cingulata var. minor were not trapped while the disease was active in the orchard. These spores do not appear to contribute to the infection cycle of mango anthracnose.  相似文献   

2.
Simulated rain (mean drop diameter c. 1 or 3 mm) was allowed to fall for 10 – 15 min on to barley leaves or straw infected by Rhynchosporium secalis (leaf blotch). The leaves were supported on a mesh through which run-off water drained and the straw was supported on a rigid surface on which run-off water collected. The numbers of R. secalis conidia and spore-carrying splash droplets collected by horizontal samplers (microscope slides and pieces of photographic film) decreased rapidly with increasing distance from and increasing height above the sources, with half-distances of 2 – 10 cm. Less than 10% of the spores or droplets reached heights of more than 30 cm. Incident drops 3 mm in diameter produced more spore-carrying droplets and dispersed more conidia than did 1 mm drops. The size category of splash droplets with the greatest proportion of the spore-carrying droplets dispersed by 3 mm drops was 200 – 400 μm, whether the source was infected barley leaves or barley straw. For leaves or straw the greatest proportions of spores were carried in droplets > 1000 μm in diameter. The mean diameter of spore-carrying droplets (478 μm) dispersed from free-draining leaves was less than that of droplets from straw plus run-off water (563 μm). However, the leaf source had more spores cm-2 and the mean number of spores per droplet was greater (113 as opposed to 6·8) than for the straw source.  相似文献   

3.
Plant pathogens have evolved many dispersal mechanisms, using biotic or abiotic vectors or a combination of the two. Rain splash dispersal is known from a variety of fungi, and can be an efficient driver of crop epidemics, with infectious strains propagating rapidly among often genetically homogenous neighboring plants. Splashing is nevertheless a local dispersal process and spores taking the droplet ride seldom move farther than a few decimeters. In this study, we assessed rain splash dispersal of conidia of the yam anthracnose agent, Colletotrichum gloeosporioides, in an experimental setting using a rain simulator, with emphasis on the impact of soil contamination (i.e., effect of re-splashing events). Spores dispersed up to 50 cm from yam leaf inoculum sources, though with an exponential decrease with increasing distance. While few spores were dispersed via re-splash from spore-contaminated soil, the proportion deposited via this mechanism increased with increasing distance from the initial source. We found no soil contamination carryover from previous rains, suggesting that contamination via re-splashing from contaminated soils mainly occurred within single rains. We conclude that most dispersal occurs from direct splashing, with a weaker contribution of indirect dispersal via re-splash.  相似文献   

4.
Guava (Psidium guajava) fruit is vulnerable to postharvest diseases, such as anthracnose. In the present study, molecular characterisation and pathogenicity of Colletotrichum associated with antharcnose disease of guava fruit were conducted. From anthracnose lesion of guava, 20 isolates were successfully recovered. Based on colony colours, conidia, appressoria and presence or absence of setae, and ITS regions and ß-tubulin gene sequences, the isolates were identified as Colletotrichum gloeosporioides. Phylogenetic analysis based on combined data-sets using neighbour-joining method showed that C. gloeosporioides isolates did not group with C. gloeosporioides epitype strain, and thus the isolates were referred to as C. gloeosporioides species complex or C. gloeosporioides sensu lato. Pathogenicity tests using wounded treatment showed that C. gloeosporioides isolates from guava were pathogenic causing anthracnose on the fruits. The present study showed that C. gloeosporioides sensu lato is the most common species causing antharcnose disease of guava fruit.  相似文献   

5.
Development and sporogenesis of Colletotrichum gloeosporioides on castor leaf differed from that on other known host plants. C. gloeosporioides had three kinds of hyphae on castor leaf: primary infection hyphae (PIH), runner hyphae (RH) and secondary infection hyphae (SIH). The PIH originated from conidia, grew on leaf surface and entered the leaf by direct penetration of the cuticle without forming appressoria. The RH were sub-cuticular hyphae, the track of which was traceable by the bulgings on the leaf surface, and the SIH were the hyphae that emerged to leaf surface from RH through the cuticle or stomata. Conidia were initiated as small protrusions along the lengths of RH and SIH that got differentiated into distinct conidia, each born on a short stumpy conidiophore without forming any congregation. The protrusions from RH emerged to the leaf surface by piercing the cuticle, and they developed into distinct conidia on the leaf surface. The conidia developed from RH and SIH were identical in size and shape. Even though conidia were occasionally found emerged through stomata, that appeared to be random than a preferred route for the discharge of conidia. The penetration and sporogenesis of C. gloeosporioides on castor leaf differed from that reported on mulberry leaf.  相似文献   

6.
Colletotrichum gloeosporioides, one of the main agents of mango anthracnose, causes latent infections in unripe mango and can lead to huge losses during fruit storage and transport. Dimethyl trisulfide (DMTS) is an antifungal agent produced by several microorganisms or plants, but its effects on the infection process of C. gloeosporioides have not been well characterized. A histological investigation demonstrated that DMTS exhibits strong inhibitory effects on the infection process of C. gloeosporioides in planta by inhibiting the germination of conidia and formation of appressoria, damaging cytoplasm to cause cells to vacuolate and contributing to deformation of appressoria prior to penetration. This is the first study to demonstrate antifungal activity of DMTS against C. gloeosporioides on mango by suppression of the infection process, thus providing a novel postharvest biorational control for mango anthracnose.  相似文献   

7.
A laboratory technique is described for the production of drops of simulated rain in which fungal spores were suspended. When such drops containing conidia of Botrytis fabae impacted on a target leaf the secondary droplets produced infections on receptor broad bean leaves. The capacity of fungicides applied to the target leaf to redistribute in secondary splash droplets was examined in terms of the infectivity of the spores in the droplets. The extent to which a copper fungicide reduced infection on the receptor leaves was related to the level and tenacity of the fungicide deposit on the target leaf. The effect of wetting agents on the redistribution of this fungicide could probably be explained by their influence on the tenacity of the initial deposit. In general the capacity of different fungicides to inhibit infection by the secondary droplets was related to the inherent toxicity of the fungicides to B. fabae. Implications of the dispersal of spores and fungicides by rain splash are briefly considered with reference to field conditions.  相似文献   

8.
Colletotrichum gloeosporioides isolate KG13 caused necrotic, sunken anthracnose symptoms on unwounded, wax-removed, and wounded green pepper fruits and on wounded red fruits 7 days after inoculation. Hypersensitive reactions with small brownish discolorations, on some occasions, were found on unwounded red fruits. The isolate produced whitish symptoms with brown margins, but not the typical anthracnose on red fruits wax-removed by chloroform treatment. Generally, wax-removed red fruits, but not green ones, produced larger lesions and more conidia than untreated controls. Wounded pepper fruits had larger lesions than those with other treatments. More germinated conidia, appressoria, and infection hyphae were found on wax-removed fruits than on controls; however, differences between green and red fruits were not found. Cuticular wax layers of fruits were dissolved partially by chloroform and the outer epidermal cells were disrupted slightly. Anthracnose development was negatively related with fruit developmental stage. Well-developed fruits had more cuticular wax than less developed fruits. These results suggest that the cuticular wax layers of pepper fruits may play a significant role in fruit infection by C. gloeosporioides isolate KG13, and mainly determine the incompatibility of red fruits to the isolate. Biochemical differences may also play a role.  相似文献   

9.
10.
Anthracnose, caused by Colletotrichum gloeosporioides Penz., is the most severe foliar disease of water yam (Dioscorea alata) worldwide. Population genetic analyses can yield useful insights into the evolutionary potential of C. gloeosporioides and thus lead to the development of appropriate disease management strategies. The genetic structure of C. gloeosporioides populations from yam and non‐yam hosts in three agroecological zones of Nigeria was investigated. Microsatellite‐primed polymerase chain reaction (MP‐PCR), virulence phenotyping using five putative D. alata differentials, cross‐inoculation tests, and the presence/absence of a Glomerella teleomorph in yam fields were used to infer the evolutionary potential of C. gloeosporioides on yam. We observed high genotypic diversity (GD = 0.99 to 1.00) for populations from all hosts and agroecological zones, with multiple pathogen genotypes in individual anthracnose lesions. Genetic differentiation was low among pathogen populations from different hosts (GST = 0.10, θ = 0.034), and agroecological zones (GST = 0.04, θ = 0.018), indicating limited host differentiation and significant gene flow. No evidence was found for the existence of C. gloeosporioides f. sp. alatae reported in previous studies. The fungus was recovered from several non‐yam host species commonly found in yam fields but non‐yam isolates caused only mild to moderate symptoms on yam. Eighteen C. gloeosporioides virulence phenotypes were identified among 217 isolates but there was a weak correlation (r = 0.02, P = 0.40) between virulence phenotype and MP‐PCR haplotype. Consistent with the above findings, we observed for the first time the Glomerella teleomorph on anthracnose‐infected yam plants in Nigeria, indicating that sexual recombination might play an important role in anthracnose epidemics on yam. The implications of these findings for C. gloeosporioides evolutionary potential and anthracnose resistance breeding are discussed.  相似文献   

11.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

12.
Previous studies of the CAP20 gene in Colletotrichum gloeosporioides show that the CAP20 gene may affect virulence in avocados and tomatoes. In this study, we characterized the function of CAP20 from C. gloeosporioides, the causal agent of Colletotrichum leaf fall disease of Hevea brasilience. CAP20 encodes a perilipin homologue protein. Further investigations showed that the Cap20‐GFP fusion protein localized in lipid droplets in hypha and conidia. A C. gloeosporioides mutant, lacking CAP20, had thinner spores and smaller appressoria, and its turgor pressure generation was dramatically reduced and pore size was enlarged. Furthermore, we tested the pathogenicity of conidia from the wild type, gene‐deleted mutant and complemented transformant C.gloeosporioides on the leaves of rubber trees in sterile water and 0.19 M PEG2000. Conidia from the wild type and complemented transformant C. gloeosporioides in 0.19 M PEG2000 caused necrotic lesions and did not produce any lesion with the CAP20 null mutant. But all of them had developed normal disease lesions when they were inoculated in water. These results suggest that CAP20 is a perilipin homologue protein and is involved in functional appressoria development in C. gloeosporioides. CAP20 gene only affects fungal virulence to some extent by reducing the penetration of the immature appressoria into host cuticle in C. gloeosporioides.  相似文献   

13.
14.
Spatial and temporal progress of anthracnose caused by Colletotrichum gloeosporioides in quantitatively resistant accessions of the tropical pasture legume Stylosanthes scabra were studied in a field experiment at the Southedge Research Station, Queensland, Australia. In a previously published work a conditional ordinal logistic regression model was developed to explain the probability of a plant developing a given disease severity level, depending on its previous disease state and that of its neighbours. In the present study this model is augmented to incorporate the effects of three weather variables which were measured daily during a growing season. Two approaches were used: (a) threshold values for relative humidity (RH), rainfall and net evaporation were used to classify days as suitable or unsuitable for anthracnose growth; (b) days were assumed to vary continuously in their rate of anthracnose growth depending on the numerical values of the weather variables. High 9am RH, low net evaporation and low 9am temperatures are significantly associated with anthracnose growth. Net evaporation proved to be a better index than rainfall and heavy rainfall was not conducive to high levels of anthracnose; however, rainfall was useful once evaporation was taken into account. The effect of 9am RH can be described either by a threshold value around 70% or by a quadratic function. A two-variable model with net evaporation and log(rain+1) explains 97.6% of the available deviance.  相似文献   

15.
Colletotrichum gloeosporioides is the common causal agent of anthracnose in papaya (Carica papaya L.) fruits, and infection by this fungal pathogen results in severe post-harvest losses. In the Yucatán peninsula (Mexico) a different Colletotrichum species was isolated from papaya fruits with atypical anthracnose lesions. The DNAs from a variety of Colletotrichum isolates producing typical and atypical lesions, respectively, were amplified by PCR with C.gloeosporioides-specific primers. All isolates from typical anthracnose lesions yielded a 450 bp PCR product, but DNAs from isolates with atypical lesions failed to produce an amplification product. For further characterization, the rDNA 5.8S-ITS region was amplified by PCR and processed for sequencing and RFLP analysis, respectively, to verify the identity of the papaya anthracnose pathogens. The results revealed unequivocally the existence of two Colletotrichum species causing anthracnose lesions on papaya fruits: C. gloeosporioides and C. capsici. PCR-RFLP using the restriction endonuclease MspI reliably reproduced restriction patterns specific for C. capsici or C. gloeosporioides. The generation of RFLP patterns by MspI (or AluI or RsaI) is a rapid, accurate, and unequivocal method for the detection and differentiation of these two Colletotrichum species.  相似文献   

16.
Anthracnose was observed on Pisonia alba plants as irregular, black, necrotic spots that often coalesce to form large necrotic area on leaves. A fungus, consistentlyisolated from symptomatic leaves was identified as C. gloeosporioides on the basis of morphological and cultural characteristics. The fungus produced white mycelia, which became dark grey with later formation of numerous salmon pink coloured spore masses. The conidia were hyaline, unicellular, aseptate and oval to cylindrical with rounded ends and were 10–20 μm long and 3–5 μm wide. Pathogenicity tests conducted on healthy detached leaves of Pisonia plants showed typical anthracnose symptoms afterfour to seven days. This is the first report of anthracnose of Pisonia alba.  相似文献   

17.
A model for estimating infection levels of anthracnose disease of mango   总被引:2,自引:0,他引:2  
Anthracnose disease of mango caused by Colletotrichum gloeosporioides var. minor, spreads by water-borne conidia from vegetative parts of the tree to attack inflorescences and prevent fruit set. An analysis of data from laboratory studies demonstrated that infection by conidia during wet periods was related both to the temperature and to the duration of the wet period. A model was used to estimate infection levels of anthracnose disease in two mango orchards over three seasons. The number of infection periods recorded and the estimated percentage of conidia forming appressoria in these periods matched disease development during flush growth and flowering. In 1980, only two infection periods were detected during flowering in one of these orchards and blossom blight did not prevent fruit set. In 1981 and 1982 however, higher estimated levels of infection were recorded more frequently during the same time and severe blossom blight developed. A second orchard, situated in an area less favourable to disease, was also monitored during 1982. Nine infection periods were recorded during flowering in this orchard compared to 14 in the first. A moderate level of blossom blight developed in this orchard.  相似文献   

18.
Conidia of Colletotrichum gloeosporioides germinate and form infection hyphae on inoculated, immature mango but remain quiescent until fruit ripening. Antifungal resorcinols have previously been implicated for quiescence of C. gloesoporioides and Alternaria alternata on mango. This study revealed the presence of a mixture of several gallotannins with glycosidic linkages, including 1,2,3,4,6‐penta‐O‐galloyl‐β‐D‐glucopyranose, with significant antifungal activity in the unripe mango fruit peel. Gallotannin antifungal activity was greater in a cultivar resistant (295.8 mm2 inhibition) to anthracnose than in a susceptible (148.4 mm2 inhibition) cultivar. In both, the activity decreased with ripening but the decrease was 10% less in the resistant cultivar. Three recorcinols, 5‐pentadecylresorcinol, 5‐(12‐cis‐heptadecenyl)resorcinol, AR 21 and another resorcinol derivative were present in the unripe fruit peel and all declined during ripening, more significantly the 5‐(12‐cis‐heptadecenyl)resorcinol and AR 21. Mango latex, when drained out, separates into an oily and aqueous phase. The aqueous phase showed significant chitinase activity and the ability to digest conidia of C. gloeosporioides. The oily phase has previously been reported to contain resorcinols. Draining fruits of latex soon after harvest resulted in greater incidence and severity of anthracnose at ripe stage. Chitinase activity was less in the peel of fruits from which latex was drained. The evidence suggests that the resistance of unripe mango to C. gloeosporioides is because of an elaborate constitutive defence system comprising antifungal resorcinols, gallotannins and chitinases.  相似文献   

19.
The mechanisms of control and efficacy of Trichoderma harzianum strain DGA01 against anthracnose-causing pathogen Colletotrichum gloeosporioides in mango cv. ‘Carabao’ were examined. The action of DGA01 towards C. gloeosporioides was mycoparasitism and production of metabolites. DGA01 parasitised the pathogen by coiling its mycelia and spores on both artificial media and mango fruit surfaces. DGA01 was a parasitic necrotroph capable of killing C. gloeosporioides in 14 days of coexistence in artificial media. Dipping fruit in conidial suspension (106?mL?L?1) of DGA01 significantly decreased the incidence of anthracnose as compared to untreated fruit. Reduction in anthracnose severity was 87.90% showing high antagonistic potential of DGA01 in vivo.  相似文献   

20.
Different leaf extracts of Garlic creeper (Adenocalymma alliaceum Miers.) using water and solvents were prepared and they were screened for their antifungal activity against Colletotricum gloeosporioides Penz. and Botryodiplodia theobromae Pat. causal agents of mango post harvest diseases viz., anthracnose and stem end rot respectively. Among the extracts tested, chloroform extract was found to be highly effective in inhibiting the spore germination of C. gloeosporioides by 84.62% and B. theobromae by 84.50% followed by methanol extract. The extracts were also inhibitory to the mycelium. Ammonium sulphate precipitation and SDS–PAGE analysis of the extract indicated the presence of a major protein with a molecular weight at 65 kDa. Two blue spots at Rf 0.96 and 0.80 was also observed in TLC analysis and the presence of tannic acid, resorcinol was evident from HPLC analysis. Treatment of fruits with leaf extract of A. alliaceum increased the activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and sugars with significant reduction in starch, phenolics, protein and ascorbic acid. The extract was partially purified and formulated as ADENOCAL 60 EC for the management of post harvest diseases of mango fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号