首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

2.
The phylogeny of subtribe Gorteriinae (Asteraceae‐Arctotideae) is investigated by means of cladistic analysis of morphological characters. Two sister groups are formed, namely a Gorteria clade also containing Hirpicium and Gazania, and a Berkheya clade, which also contains Cullumia, Cuspidia, Didelta and Heterorhachis. The Gorteria clade has strong jackknife support and is diagnosed by four morphological characters (leaves with longitudinally striate hairs, fringed anther apical appendages, pollen of the “Gazania‐type”, and subulate‐ensiform, ascending style sweeping hairs) that are unique within the Asteraceae. The Berkheya clade is moderately supported and diagnosed by two characters without contradiction (spiny leaves, and mamillate, large style sweeping hairs). Hirpicium and Berkheya are paraphyletic, with the other, morphologically more homogeneous genera (Gorteria, and Gazania, Cullumia, Cuspidia, Didelta and Heterorhachis, respectively) nested within them. There is some evidence for a radiation of species of the summer rainfall area of South Africa and tropical Africa and the corresponding species are nested within a grade confined to the Cape Floristic Region. © The Willi Hennig Society 2006.  相似文献   

3.
It has been assumed that species of the large African genus Protea have strong self‐incompatibility systems. However, this assumption was based largely on studies conducted on a clade of bird‐pollinated species that occur in the shrubby fynbos vegetation of the Cape region of southern Africa. To test whether self‐incompatibility occurs in a grassland/savanna Protea clade, which is largely insect‐pollinated, we performed controlled pollination experiments on four species, P. caffra, P. dracomontana, P. simplex and P. welwitschii. Although pollen–ovule ratios of all four species fall within the range for outcrossers, all four species are self‐compatible and capable of autonomous seed production. Using fluorescence microscopy, we found that self‐pollen tubes had the same probability of reaching ovules as cross‐pollen tubes. In the small tree P. caffra, selfed progeny had rates of germination and survivorship that were identical to those of crossed progeny. The grassland Protea spp. studied are likely to have mixed mating systems on account of being both visited by insects and capable of autonomous selfing. If one assumes previous reports of self‐incompatibility in Protea to be reliable, there have been at least five losses of self‐incompatibility and two gains of autonomous selfing in this genus. However, earlier studies in the genus were often methodologically flawed and a thorough re‐analysis of breeding systems in Protea is required. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 169 , 433–446.  相似文献   

4.
Africa, inclusive of the West Indian Ocean islands, harbours 11 of the world's 16 extant testudinid genera. Fossil records indicate that testudinids originated in Asia and dispersed first to North America and Europe (Early Eocene) and later to Africa (Late Eocene). We used mitochondrial (1870 bp) and nuclear (1416 bp) DNA sequence data to assess whether molecular data support the late cladogenesis of Southern African testudinid lineages. Our results revealed strong support for the monophyly of a clade consisting of Kinixys, the two Malagasy genera and four Southern African genera (Psammobates, Stigmochelys, Homopus and Chersina). Kinixys diverged from this clade in the Late Palaeocene, suggesting that testudinids occupied Africa at an earlier date than indicated by fossil records. The Southern African tortoises consist of three, strongly supported clades: Psammobates + Stigmochelys; the five‐toed Homopus + Chersina; and the four‐toed Homopus. Due to the paraphyly of Homopus, we propose the taxonomic resurrection of Chersobius for the five‐toed Homopus species (boulengeri, signatus and solus). Cladogenesis at the genus level occurred mainly in the Eocene, with Chersina and Chersobius diverging in the Oligocene. The latter divergence coincided with species‐level radiations within Homopus (areolatus and femoralis) and Psammobates (oculifer, geometricus and tentorius). Our phylogeny could not resolve relationships within Psammobates, indicating rapid speciation between the Late Oligocene and Early Miocene. The Chersobius species were the last to diverge in the Early to Mid‐Miocene. By the Mid‐Miocene, P. tentorius started to differentiate into four lineages instead of the three recognized subspecies: P. t. tentorius, P. t. trimeni and two P. t. verroxii subclades occurring north and south of the Orange River, respectively. Terminal radiations in several taxa suggest the existence of cryptic species and a more diverse tortoise fauna than currently recognized. Factors contributing to this diversity may include the early origin of African testudinids and climatic fluctuations over a heterogeneous landscape.  相似文献   

5.
Gongora, J., Cuddahee, R. E., do Nascimento, F. F., Palgrave, C. J., Lowden, S., Ho, S. Y. W., Simond, D., Damayanti, C. S., White, D. J., Tay, W. T., Randi, E., Klingel, H., Rodrigues‐Zarate, C. J., Allen, K., Moran, C. & Larson, G. (2011). Rethinking the evolution of extant sub‐Saharan African suids (Suidae, Artiodactyla). —Zoologica Scripta, 40, 327–335. Although African suids have been of scientific interest for over two centuries, their origin, evolution, phylogeography and phylogenetic relationships remain contentious. There has been a long‐running debate concerning the evolution of pigs and hogs (Suidae), particularly regarding the phylogenetic relationships among extant Eurasian and African species of the subfamily Suinae. To investigate these issues, we analysed the mitochondrial and nuclear DNA sequences of extant genera of Suidae from Eurasia and Africa. Molecular phylogenetic analyses revealed that all extant sub‐Saharan African genera form a monophyletic clade separate from Eurasian suid genera, contradicting previous attempts to resolve the Suidae phylogeny. Two major sub‐Saharan African clades were identified, with Hylochoerus and Phacochoerus grouping together as a sister clade to Potamochoerus. In addition, we find that the ancestors of extant African suids may have evolved separately from the ancestors of modern day Sus and Porcula in Eurasia before they colonised Africa. Our results provide a revision of the intergeneric relationships within the family Suidae.  相似文献   

6.
Aim We test biogeographical hypotheses regarding the origin of Andean‐centred plant groups by reconstructing phylogeny in the short‐branch clade (SBC) of Annonaceae, and estimating the timing of diversifications in four apparently Andean‐centred genera: Cremastosperma R.E.Fr., Klarobelia Chatrou, Malmea R.E.Fr. and Mosannona Chatrou. The SBC includes species distributed in both the Old and New World tropics. A number of the Neotropical genera display ‘Andean‐centred’ distribution patterns, with high species richness on both sides of the Andes mountain range. In particular, we test whether these groups could have originated on the South American continent during the time frame of the Andean orogeny [from c. 23 Ma (Miocene) to the present]. Methods Chloroplast DNA sequences were used to reconstruct phylogeny in related Annonaceae taxa plus outgroups, under maximum parsimony and Bayesian inference. The markers rbcL, trnL‐trnF and psbA‐trnH were sampled for 96 accessions to test the monophyly of each of the genera, and thus whether they might be para‐ or polyphyletic with respect to related groups distributed across Amazonia. To determine the sister groups of the four genera, the additional markers matK, ndhF, trnT‐trnL, trnS‐trnG and atpB‐rbcL were sampled for 23 of the 96 accessions. Molecular dating techniques (nonparametric rate‐smoothing; penalized likelihood; Bayesian inference) were then applied to estimate the age of the crown group of each genus and the age of their sister groups. Results Monophyly was confirmed in Cremastosperma, Malmea and Mosannona. The monotypic genus Pseudephedranthus Aristeg. was found to be nested within Klarobelia, the species of which otherwise formed a monophyletic group, and a South American‐centred (SAC) clade was identified. The SAC clade comprises all the SBC genera distributed in South America and generally to a limited extent into Central America, but not those endemic to Africa, Asia and Central America. Age estimations for clades within the SBC were no older than around 60 Myr; those for the crown groups of Cremastosperma, Klarobelia, Malmea and Mosannona fell largely within the last 10–20 Myr. Main conclusions The distribution patterns of Cremastosperma, Klarobelia, Malmea and Mosannona are not the arbitrary result of the definition of para‐ or polyphyletic groups. We infer the presence of a common ancestor of the four genera in South America, but not by vicariance of an ancestral population on Gondwana. The age estimations, instead, may suggest that the SAC clade originated in South America by dispersal across the Boreotropics. Although the strength of this test was limited by imprecision in the molecular dating results, the ages of crown groups of the four genera suggest that diversifications occurred within the time frame of the orogeny of the Northern Andes.  相似文献   

7.
Aquifoliales, as currently circumscribed, comprise five families and 20 genera, most of which have not been compared with regard to their pollen. Generic relationships within the order have not been fully resolved with molecular data, but pollen can provide a potential source of characters for future phylogenetic studies. To assess diversity in the order, pollen from 19 genera was examined with light and scanning electron microscopy. Pollen is typically tricolpate to triporate, although grains with one to nine pores were observed. Grains are small to medium, with a polar axis of 6–44 μm and an equatorial axis of 10–47 μm. Irregular pollen was recorded from nine genera. Exine patterning is diverse at the generic level and includes psilate, microechinate, striate to reticulate and clavate types, and is quite complex in some genera. All but four genera of Aquifoliales can be readily distinguished by their pollen, if heavy deposits of pollenkitt (present in 11 genera) are removed during and after acetolysis. Pollen from multiple taxa of Gomphandra, the second most diverse genus in the order, was surveyed to investigate species boundaries. Specimens of Gomphandra from continental Asia exhibited seven different pollen morphologies, suggesting that exine patterns may be useful for the recognition of species in that region. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 169–190.  相似文献   

8.
Pollen nuclear number is determined in 139 species of 5 genera in the Euphorbieae, subtribe Euphorbiinae. The 111 new determinations are tabulated along with previous reports, and the results indicate that the distribution of binucleate (II) and trinucleate (III) pollen is strongly associated with the taxonomic groupings within the Euphorbieae. Although binucleate pollen is probably primitive within the tribe Euphorbieae, as suggested by the nuclear condition in Neoguillauminia, the situation in Euphorbia still requires further elucidation. Within Euphorbia, the morphologically most primitive species studied have III pollen despite the fact that II pollen is presumably the original condition for the subtribe Euphorbiinae. In Euphorbia, II pollen only is reported from nine sections and III pollen only from ten sections, while in four sections (Esula, Goniostema, Aphyllis, and Deuterocalli) both II and III pollen have been found. The New World species of Euphorbia nearly all have III pollen, whereas the vast majority of the African succulents have II pollen. The genera of New World origin, Chamaesyce and Pedilanthus, have III pollen, while the African genera Monadenium and Synadenium have II pollen. Independent derivations of III pollen from II pollen appear to have occurred in sections Goniostema, Aphyllis, and Deuterocalli (all of subg. Euphorbia). There is no evidence that reversals from III to II pollen have occurred.  相似文献   

9.
The genus Apalis is a member of the African forest warblers clade of the Cisticolidae. In view of its morphological diversity, it was suggested that this genus needs a taxonomic revaluation. For this, we sequenced a nuclear intron (myoglobin intron 2) and two mitochondrial protein‐coding genes (ND2 and ND3). The 2016 bp of sequence data obtained were aligned and subjected to parsimony, maximum likelihood and Bayesian inference. All three genes strongly reject the monophyly of Apalis but support the placing of all apalises within a broader clade of forest cisticolids which also includes Urolais. Within this forest clade, a subclade is defined which includes the genera Urolais, Schistolais and a well‐supported clade comprising three afromontane species, the Black‐collared Apalis Apalis pulchra, the Ruwenzori Apalis Apalis ruwenzorii and the African Tailorbird Artisornis. This subclade is sister to other members of Apalis, including the type species of the genus the Bar‐throated Apalis Apalis thoracica. A new generic name, Oreolais, is suggested for the Black‐collared and Ruwenzori Apalises.  相似文献   

10.
The pollen morphology and ultrastructure of 20 species, representing eight genera of the Magnoliaceae are described based on observations with light, scanning and transmission electron microscopy. The family represents a homogeneous group from a pollen morphological point of view. The pollen grains are boat-shaped with a single elongate aperture on the distal face. The tectum is usually microperforate, rarely slightly or coarsely rugulose. Columellae are often irregular, but well-developed columellae do occur in some taxa. The endexine is distinct in 14 species, but difficult to discern in the genera Parakmeria, Kmeria and Tsoongiodendron. Within the aperture zone the exine elements are reduced to a thin foot layer. The intine has three layers with many vesicular-fibrillar components and tubular extensions in intine 1. The symmetry of the pollen grains, shape, type of aperture and ultrastructure of the intine show a remarkable uniformity in the family. Nevertheless there is variety in pollen size, ornamentation and the ultrastructure of the exine. The pollen of Magnoliaceae is an example of an early trend of specialization, and supports the view that Magnoliaceae are not one of the earliest lines in the phylogeny of flowering plants.  相似文献   

11.
Recent studies of mitochondrial DNA sequences have indicated the requirement for substantial revisions of the morphological understanding of the phylogeny of Megachiroptera (Pteropodidae). There is disagreement between studies as to what these revisions might be. This investigation was undertaken to expand the number of studied species and to add the first data from a nuclear gene sequence. For 12S ribosomal DNA (aligned length of 405 positions), 75 Megachiroptera (50 species in 20 genera) and two outgroup species were sequenced. For the oncogene c-mos (aligned length of 488 bases), 56 Megachiroptera (42 species in 19 genera) were sequenced and three eutherians from GenBank used as outgroups.The root of the megachiropteran phylogeny cannot be determined with the present data. Nyctimene, the only studied insectivorous genus (Paranyctimene not being included), plus Notopteris, the only long-tailed megachiropteran, form the sister clade to the other genera in combined analyses. Several alternative rootings are not rejected by the data, suggesting a rapid early radiation. Generic distributions indicate that this may have occurred in Melanesia. The results confirm that the subfamily Macroglossinae is not monophyletic with the long tongued phenoptype arising at least twice and support the existence of a major clade including a monophyletic endemic African component and biogeographically neighboring genera such as Rousettus and Eonycteris. The phylogenetic position of one African genus, Eidolon, remains uncertain.A cynopterine section (excluding Nyctimene and Myonycteris) is supported, albeit weakly, as a monophyletic group. Pteropus and the related, possibly polyphyletic genus Pteralopex, are unexpectedly basal compared to previous molecular studies.  相似文献   

12.
The phylogeny of the poroid and hydnoid genera Antrodiella, Junghuhnia, and Steccherinum (Polyporales, Basidiomycota) was studied utilizing sequences of the gene regions ITS, nLSU, mtSSU, atp6, rpb2, and tef1. Altogether 148 taxa, represented by 549 sequences, were included in analyses. Results show that most species of these genera form a well supported clade in the Polyporales, called Steccherinaceae, along with 12 other hydnoid and poroid genera. Within the Steccherinaceae, generic concepts need to be revised: no fewer than 15 new genera are needed to accommodate existing and new species. At least 16 transitions have taken place between poroid and hydnoid hymenophore types within the Steccherinaceae, and similar plasticity can be seen in microscopic characters. Nevertheless, natural genera revealed in the analysis can mostly be characterized morphologically and, with few exceptions, poroid and hydnoid species belong to separate genera. The genus Steccherinum is shown to contain both hydnoid and poroid species. Species of the former Antrodiella belong to at least 10 genera within the Steccherinaceae. © The Willi Hennig Society 2011.  相似文献   

13.
Phylogenetic relationships among eight of nine Myrmecocichla chat species were inferred from DNA data. Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported most branches in the phylogeny. Based on these results, Myrmecocichla, as currently defined, is not monophyletic. The results indicated that Myrmecocichla albifrons is part of a Cercomela + Oenanthe clade, whereas Oenanthe monticola is shown to be a Myrmecocichla. In addition, Myrmecocichla arnotti is shown to be polyphyletic. Phylogenetic analyses support three Southern versus Eastern or Northern speciation events. The dating of these speciation events suggests that they correspond to periods when the Afrotropical forests were expanded to coastal Kenya, 3–5 Mya. This forest expansion thus served as a vicariant driver of speciation in the genus, a result consistent with speciation patterns in other arid‐adapted African bird genera. Our haplotype analysis within one of the most widespread and habitat diverse Myrmecocichla species (formicivora, a southern African endemic) showed little genetic variation. Along with speciation patterns shown for Myrmecocichla and other avian genera, this lack of standing variation would appear to support large, inter‐regional drivers of speciation as having the largest effect on the diversification of arid‐adapted Africa bird species, which is in stark contrast to other vertebrate lineages whose genetic structure often shows strong intra‐regional effects. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 180–190.  相似文献   

14.
Honey and bee bread samples from storage pots of Melipona quadrifasciata anthidioides were collected monthly from April 2015 to May 2016 in the Mogi Guaçu Biological Reserve (22º 10? S, 47º 11? W). The flora in the site is characteristic of the Atlantic Forest with preserved areas of savanna-like vegetation surrounded by commercial forests, orchards and various crops of exotic and native plants. Samples were analysed with the use of melissopalynological methodology and 46 pollen types from 38 genera and 30 families were identified in 25 honey samples. Fabaceae, Asteraceae, Myrtaceae, Sapindaceae showed the greatest pollen richness in honey. Predominant nectariferous pollen types were Anadenanthera, Cordia, Eucalyptus, Mimosa scabrella, Schefflera, Sida, Serjania and Vernonia. Twenty-eight types of pollen from 21 genera and 19 families were identified in 22 bee bread samples. Fabaceae, Asteraceae and Myrtaceae showed the highest pollen richness. Anadenanthera, Cecropia, Eucalyptus, Melastomataceae, Mimosa scabrella, Mimosa verrucosa and Myrcia were the most frequent polliniferous pollen types. Principal component analysis (PCA) demonstrated that honey and pollen samples formed two main groups of similarity, mainly due to Eucalyptus’ nectar and pollen of Melastomataceae, respectively. Melipona quadrifasciata anthidioides collected nectar and pollen from the preserved areas as well as in the secondary and ‘ruderal’ vegetation and in cultivated forests/fields, suggesting their importance as pollinators both of native flora and exotic species. The use of trophic resources of plants grown with pesticides is a concern for the conservation of these species of bee and should be better studied.  相似文献   

15.
Nolana comprises 89 species almost entirely restricted to the Atacama and Peruvian deserts. These species are adapted to the arid lomas environment of northern Chile and southern Peru, where they depend on marine fog locally known as garúa or camanchaca for their development. Recent molecular phylogenetic studies provide support for the placement of Nolana in the Solanaceae rather than Nolanaceae. Additionally, a sister relationship with the tribe Lycieae has been suggested. The pollen morphology of 111 species from 18 genera of southern South American Solanaceae was investigated under light and scanning electron microscopes in order to establish the palynological affinities of Nolana within the Solanaceae and to investigate if pollen morphology is congruent with the phylogenetic relationships and former taxonomic classification of the species of Nolana. The following genera were studied: Nolana, Cestrum, Combera, Dunalia, Fabiana, Jaborosa, Latua, Lycium (incl. Grabowskia, Phrodus), Nicandra, Nicotiana, Nierenbergia, Petunia, Physalis, Reyesia, Salpiglossis, Schizanthus, Solanum and Vestia. Two pollen types that differ in exine structure were distinguished within Nolana; these pollen types are congruent with recent phylogenetic studies, thus, we propose to reinstate Nolana sect. Sorema.  相似文献   

16.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

17.
Eremiadinae, one of three subfamilies of Lacertidae, are distributed throughout Asia and Africa. Previous phylogenetic studies suggested that one of the main groups of Eremiadinae (the Ethiopian clade) consist of two clades with predominately East‐African and South‐African distribution. Yet, especially the latter one, which includes the genera Pedioplanis, Meroles, Ichnotropis, Tropidosaura and Australolacerta, was not well supported in the molecular phylogenetic analysis. In this study, we analysed the phylogenetic relationships among the genera of the ‘South African clade’ to assess whether this group actually forms a highly supported clade and to address questions concerning the monophyly of the genera. We sequenced sections of the widely used mitochondrial genes coding for 16S rRNA, 12S rRNA and cytochrome b (altogether 2045 bp) as well as the nuclear genes c‐mos, RAG‐1, PRLR, KIF24, EXPH5 and RAG‐2 (altogether 4473 bp). The combined data set increased the support values for several nodes considerably. Yet, the relationships among five major lineages within the ‘South African clade’ are not clearly resolved even with this large data set. We interpret this as a ‘hard polytomy’ due to fast radiation within the South African lacertids. The combined tree based on nine marker genes provides strong support for the ‘South African Clade’ and its sister group relationship with the ‘East African Clade’. Our results confirm the genus Tropidosaura as a monophylum, while Ichnotropis is paraphyletic in our trees: Ichnotropis squamulosa appears more closely related to Meroles than to Ichnotropis capensis. Furthermore, the monophyly of Meroles is questionable as well. Based on our results, I. squamulosa should be transferred from Ichnotropis into the genus Meroles. Also, the two species of Australolacerta (A. australis and A. rupicola) are very distantly related and the genus is perhaps paraphyletic, too. Finally we propose a phylogeographical scenario in the context of palaeoclimatic data and compare it with a previously postulated hypothesis.  相似文献   

18.
The phylogeny of Oedogoniales was investigated by using nuclear 18S rDNA sequences. Results showed that the genus Oedocladium, as a separated clade, was clustered within the clade of Oedogonium; whereas the genus Bulbochaete was in a comparatively divergent position to the other two genera. The relationship among the species of Oedogonium was discussed, focusing on ITS-2 phylogeny analyzed combining with some morphological characteristics. Our results showed that all the dioecious nannandrous taxa involved in this study were resolved into one clade, while all the monocious taxa were clustered into another clade as a sister group to the former. The report also suggests that the dioecious macrandrous taxa form a paraphyly and could be more basally situated than the dioecious nannandrous and the monoecious taxa by means of molecular phylogeny and morphotype investigations.  相似文献   

19.
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well‐resolved phylogeny from the perspective of the plastomes.  相似文献   

20.
Evolutionary and ecological hypotheses of the freshwater mussel subfamily Ambleminae are intensely geographically biased—a consequence of the complete exclusion of Mesoamerican taxa in phylogenetic reconstructions of the clade. We set out to integrate a portion of the Mesoamerican freshwater mussel assemblage into existing hypotheses of amblemine classification and evolution by generating a molecular phylogeny that includes four previously unsampled Mesoamerican genera and nine species endemic to that region. Given the traditionally hypothesized affinity to Nearctic mussels and the understanding that classification should reflect common ancestry, we predicted that (a) Mesoamerican genera would be recovered as members of the recognized tribes of the Ambleminae, and (b) genera would be supported as monophyletic. The mutilocus phylogeny (COI + 28S + 16S) reported herein does not fully support either of those hypotheses. Neither Cyrtonaias nor Psorula were supported as monophyletic and we predict several other Mesoamerica genera are also non‐monophyletic. The reconstructed phylogeny recovered four independent lineages of Mesoamerican freshwater mussels and these clades are distributed across the phylogeny of the Ambleminae, including the tribe Quadrulini (Megalonaias), Lampsilini (two lineages: Cyrtonaias explicata/Sphenonaias microdon, and Pachynaias), and a previously unrecognized, exclusively Mesoamerican and Rio Grande clade consisting of the genera Psoronaias, Psorula and Popenaias. The latter clade possesses several morphological characteristics that distinguish it from its sister taxon, tribe Lampsilini, and we recognize this newly identified Mesoamerican clade as a fifth tribe of the Ambleminae attributable to the Popenaiadini Heard & Guckert, 1970. This revised classification more completely recognizes the suprageneric diversity of the Ambleminae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号