首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three anomalously pigmented dinoflagellates Gymnodinium galatheanum, Gyrodinium aureolum, and Gymnodinium breve have plastids possessing 19'-hexanoyloxy-fucoxanthin as the major carotenoid rather than peridinin, which is characteristic of the majority of the dinoflagellates. Analyses of SSU rDNA from the plastid and the nuclear genome of these dinoflagellate species indicate that they have acquired their plastids via endosymbiosis of a haptophyte. The dinoflagellate plastid sequences appear to have undergone rapid sequence evolution, and there is considerable divergence between the three species. However, distance, parsimony, and maximum-likelihood phylogenetic analyses of plastid SSU rRNA gene sequences place the three species within the haptophyte clade. Pavlova gyrans is the most basal branching haptophyte and is the outgroup to a clade comprising the dinoflagellate sequences and those of other haptophytes. The haptophytes themselves are thought to have plastids of a secondary origin; hence, these dinoflagellates appear to have tertiary plastids. Both molecular and morphological data divide the plastids into two groups, where G. aureolum and G. breve have similar plastid morphology and G. galatheanum has plastids with distinctive features.  相似文献   

2.
Recent molecular sequencing results involving multiple genes require evaluation in the light of preexisting morphological data, particularly as different methodologies and genes produce trees that are incongruent in some respects or have major areas with poorly supported branch resolution. The present paper summarizes the current situation, primarily from a morphologist's perspective. Most of the tabulation‐based groups are coherent in small subunit (SSU) and large subunit (LSD) trees; but some, notably the prorocentroids and peridinioids, are not. In prorocen‐troids this is primarily because of intrinsic inadequacies of the molecules to resolve their phylogeny. In peridinioids it seems to be because of paraphyly of the group. Other artefacts are noted, such as the drastically different positions of Oxyrrhis in phylogenetic trees based on SSU and protein genes, and of Noctiluca in SSU trees that include analyses with different numbers of nucleotides. Polyphyly in non‐tabulate or poorly known groups has been confirmed, as has been the presence of cryptic thecae in members of those groups (group misattribution). Whether or not some extant groups of athecate, wholly dinokaryotic forms originated prior to polytabulate groups, like the suessioids, peridinioids and gonyaula‐coids, remains unclear. Gymnodinioids with a spiral acrobase seem to have given rise to the more complex athecate forms, whereas morphological features of the genus Gymnodinium are consistent with it being a sister group to polytabulate taxa such as Woloszynskia and the suessioids. Peridinioids and gonyaulacoids appear to have originated after that split. Dinophysoid and prorocentroid dinoflagellates appear to be derived from peridinioid forms. Trees based on protein genes, such as actin or α‐ and β‐tubulin, may help resolve some of the positions of key groups, but they do not include enough taxa to be widely useful as yet.  相似文献   

3.
4.
Takishita K  Koike K  Maruyama T  Ogata T 《Protist》2002,153(3):293-302
The dinoflagellate genus Dinophysis contains species known to cause diarrhetic shellfish poisoning. Although most photosynthetic dinoflagellates have plastids with peridinin, photosynthetic Dinophysis species have cryptophyte-like plastids containing phycobilin rather than peridinin. We sequenced nuclear- and plastid-encoded SSU rDNA from three photosynthetic species of Dinophysis for phylogenetic analyses. In the tree of nuclear SSU rDNA, Dinophysis was a monophyletic group nested with peridinin-containing dinoflagellates. However, in the tree of plastid SSU rDNA, the Dinophysis plastid lineage was within the radiation of cryptophytes and was closely related to Geminigera cryophila. These analyses indicate that an ancestor of Dinophysis, which may have originally possessed peridinin-type plastid and lost it subsequently, adopted a new plastid from a cryptophyte. Unlike dinoflagellates with fully integrated plastids, the Dinophysis plastid SSU rDNA sequences were identical among the three species examined, while there were species-specific base substitutions in their nuclear SSU rDNA sequences. Queries of the DNA database showed that the plastid SSU rDNA sequence of Dinophysis is almost identical to that of an environmental DNA clone of a <10 pm sized plankter, possibly a cryptophyte and a likely source of the Dinophysis plastid. The present findings suggest that these Dinophysis species engulfed and temporarily retained plastids from a cryptophyte.  相似文献   

5.
Molecular data and the evolutionary history of dinoflagellates   总被引:10,自引:3,他引:7  
We have sequenced small-subunit (SSU) ribosomal RNA (rRNA) genes from 16 dinoflagellates, produced phylogenetic trees of the group containing 105 taxa, and combined small- and partial large-subunit (LSU) rRNA data to produce new phylogenetic trees. We compare phylogenetic trees based on dinoflagellate rRNA and protein genes with established hypotheses of dinoflagellate evolution based on morphological data. Protein-gene trees have too few species for meaningful in-group phylogenetic analyses, but provide important insights on the phylogenetic position of dinoflagellates as a whole, on the identity of their close relatives, and on specific questions of evolutionary history. Phylogenetic trees obtained from dinoflagellate SSU rRNA genes are generally poorly resolved, but include by far the most species and some well-supported clades. Combined analyses of SSU and LSU somewhat improve support for several nodes, but are still weakly resolved. All analyses agree on the placement of dinoflagellates with ciliates and apicomplexans (=Sporozoa) in a well-supported clade, the alveolates. The closest relatives to dinokaryotic dinoflagellates appear to be apicomplexans, Perkinsus, Parvilucifera, syndinians and Oxyrrhis. The position of Noctiluca scintillans is unstable, while Blastodiniales as currently circumscribed seems polyphyletic. The same is true for Gymnodiniales: all phylogenetic trees examined (SSU and LSU-based) suggest that thecal plates have been lost repeatedly during dinoflagellate evolution. It is unclear whether any gymnodinialean clades originated before the theca. Peridiniales appear to be a paraphyletic group from which other dinoflagellate orders like Prorocentrales, Dinophysiales, most Gymnodiniales, and possibly also Gonyaulacales originated. Dinophysiales and Suessiales are strongly supported holophyletic groups, as is Gonyaulacales, although with more modest support. Prorocentrales is a monophyletic group only in some LSU-based trees. Within Gonyaulacales, molecular data broadly agree with classificatory schemes based on morphology. Implications of this taxonomic scheme for the evolution of selected dinoflagellate features (the nucleus, mitosis, flagella and photosynthesis) are discussed.  相似文献   

6.
沟鞭藻为单细胞的原始的海洋生物。古生物学家根据形态特征,超微结构和生物化学信息认为沟鞭藻可能在前寒武纪时已存在,并推测古生代疑源类可能是现代沟鞭藻的先祖,但确凿的沟鞭藻囊孢的化石记录始于晚三叠世。生物标志物以分子化石的形式记录了沟鞭藻的起源及演化历史。在古生代及前寒武纪地层中甲藻甾烷及三芳沟鞭藻的检出,建立了沟鞭藻与其古代先祖(疑源类)的联系,提供了沟鞭藻先祖前寒武纪存在的证据。  相似文献   

7.
Chan LL  Hodgkiss IJ  Lu S  Lo SC 《Proteomics》2004,4(1):180-192
The sample preparation procedures established for Prorocentrum triestinum were adapted to cover both thecate and athecate dinoflagellates. Further, whether trichloroacetic acid (TCA) precipitation can be used to fix and preserve the harmful or nuisance species from local waters that they infest was tested. Optimized technical procedures developed were used to generate proteome reference maps for eight other local causative species of harmful algal blooms (HABs): Prorocentrum micans, Prorocentrum minimum, Prorocentrum sigmoides, Prorocentrum dentatum, Scrippsiella trochoidea, Karenia longicanalis, Karenia digitata and Karenia mikimotoi; together with one American species Karenia brevis (Florida, USA). These proteome maps were used to test their ability for species recognition in a mixed culture of dinoflagellates and whether such investigations will provide a comparative view at a global level. Comparisons of proteome profiles were made (i). between closely related species within the same family; (ii). between distantly related species belonging to different types, i.e., gymnodinioids, prorocentroids or peridinioids, or (iii). between different groups, i.e., thecate (armored) dinoflagellate cells against athecate (naked or unarmored) dinoflagellate cells. Species-specific two-dimensional electrophoresis (2-DE) protein profiles were observed in all ten species and it was possible to distinguish between even closely related species within the same family. To demonstrate the extent of reproducibility and usefulness of these 2-DE reference maps, 2-DE has been used to analyze three geographically distinct isolates of Prorocentrum dentatum, and to distinguish species composition in a mixed culture. Application of 2-D PAGE analysis to differentiate between taxonomically confused strains of a single species could be a powerful taxonomic tool.  相似文献   

8.
To infer the phylogeny of both the host and the endosymbiont of Peridinium quinquecorne Abé, the small subunit (SSU) ribosomal DNA (rDNA) from the host and two genes of endosymbiont origin (plastid‐encoded rbcL and nuclear‐encoded SSU rDNA) were determined. The phylogenetic analysis of the host revealed that the marine dinoflagellate P. quinquecorne formed a clade with other diatom‐harbouring dinoflagellates, including Kryptoperidinium foliaceum (Stein) Lindeman, Durinskia baltica (Levander) Carty et Cox and Galeidinium rugatum Tamura et Horiguchi, indicating a single endosymbiotic event for this lineage. Phylogenetic analyses of the endosymbiont in these organisms revealed that the endosymbiont of P. quinquecorne formed a clade with a centric diatom (SSU data indicated it to be closely related to Chaetoceros), whereas the endosymbionts of other three dinoflagellates formed a clade with a pennate diatom. The discrepancy between the host and the endosymbiont phylogenies suggests a secondary replacement of the endosymbiont from a pennate to a centric diatom in P. quinquecorne.  相似文献   

9.
Dinoflagellates harbour diverse plastids obtained from several algal groups, including haptophytes, diatoms, cryptophytes, and prasinophytes. Their major plastid type with the accessory pigment peridinin is found in the vast majority of photosynthetic species. Some species of dinoflagellates have other aberrantly pigmented plastids. We sequenced the nuclear small subunit (SSU) ribosomal RNA (rRNA) gene of the "green" dinoflagellate Gymnodinium chlorophorum and show that it is sister to Lepidodinium viride, indicating that their common ancestor obtained the prasinophyte (or other green alga) plastid in one event. As the placement of dinoflagellate species that acquired green algal or haptophyte plastids is unclear from small and large subunit (LSU) rRNA trees, we tested the usefulness of the heat shock protein (Hsp) 90 gene for dinoflagellate phylogeny by sequencing it from four species with aberrant plastids (G. chlorophorum, Karlodinium micrum, Karenia brevis, and Karenia mikimotoi) plus Alexandrium tamarense, and constructing phylogenetic trees for Hsp90 and rRNAs, separately and together. Analyses of the Hsp90 and concatenated data suggest an ancestral origin of the peridinin-containing plastid, and two independent replacements of the peridinin plastid soon after the early radiation of the dinoflagellates. Thus, the Hsp90 gene seems to be a promising phylogenetic marker for dinoflagellate phylogeny.  相似文献   

10.
The taxonomic relationship between heterotrophic and parasitic dinoflagellates has not been studied extensively at the molecular level. In order to investigate these taxonomic relationships, we sequenced the small subunit (SSU) ribosomal RNA gene of Pfiesteria piscicida (Steidinger et Burkholder), a Pfiesteria -like dinoflagellate, Cryptoperidiniopsoid sp., and Amyloodinium ocellatum (Brown) and submitted those sequences to GenBank. Pfiesteria piscicida and Cryptoperidiniopsoid sp. are heterotrophic dinoflagellates, purportedly pathogenic to fish, and A. ocellatum, a major fish pathogen, has caused extensive economic losses in both the aquarium and aquaculture industries. The pathogenicity of the Pfiesteria -like dinoflagellate is unknown at this time, but its growth characteristics and in vitro food preferences are similar to those of P. piscicda. The SSU sequences of these species were aligned with the other full-length dinoflagellate sequences, as well as those of representative apicomplexans and Perkinsus species, the groups most closely related to dinoflagellates. Phylogenetic analyses indicate that Cryptoperidiniopsoid sp., P. piscicida, and the Pfiesteria -like dinoflagellate are closely related and group into the class Blastodiniphyceae, as does A. ocellatum. None of the species examined were closely related to the apicomplexans or to Perkinsus marinus, the parasite that causes "Dermo disease" in oysters. The overall phylogenetic analyses largely supported the current class and subclass groupings within the dinoflagellates.  相似文献   

11.
The 5.8 S rRNA gene of Prorocentrum micans, a primitive dinoflagellate, has been cloned and its 159 base pairs (bp) have been sequenced along with the two flanking internal transcribed spacers (ITS 1 and 2), respectively, 212 and 195 bp long. Nucleotide sequence homologies between several previously published 5.8 S rRNA gene sequences including those from another dinoflagellate, an ascomycetous yeast, protozoans, a higher plant and a mammal have been determined by sequence alignment. Two prokaryotic 5'-ends of the 23 S rRNA gene have been compared owing to their probable common origin with eucaryotic 5.8 S rRNA genes. Several nucleotides are distinctive for dinoflagellates when compared with either typical eucaryotes or procaryotes. This is consistent with an early divergence of the dinoflagellate lineage from the typical eucaryotes. The secondary structure of dinoflagellate 5.8 S rRNA molecules fits the model of Walker et al. (1983). Conserved nucleotides which distinguish dinoflagellate 5.8 S rRNA from that of other eucaryotes are located in specific loops which are assumed to play a structural role in the ribosome. A 5.8 S rRNA phylogenetic tree which is proposed, based on sequence data, supports our initial assumption of the dinoflagellates.  相似文献   

12.
ABSTRACT. Perkinsids and colpodellids are lineages that diverged near the origins of dinoflagellates and apicomplexans, respectively, and provide compelling insights into the earliest stages of alveolate evolution. Perkinsids, including Perkinsus and Parvilucifera , are intracellular parasites of animals and dinoflagellates and possess traits also known in syndineans, dinokaryotes (mainly free living dinoflagellates), and colpodellids. An improved understanding of perkinsid biodiversity and phylogeny is expected to shed considerable light on the evolutionary origins of syndineans and dinokaryotes as well as the cellular identities of environmental sequences derived from marine and freshwater habitats. Accordingly, the small subunit (SSU) rDNA sequence from Parvilucifera prorocentri , a tube-forming intracellular parasite of the marine benthic dinoflagellate Prorocentrum fukuyoi , was determined. Molecular phylogenetic analyses demonstrated, with very high statistical support, that P. prorocentri branched as a sister lineage to a divergent clade consisting of Parvilucifera infectans and Parvilucifera sinerae . The entire Parvilucifera clade was nested within a more inclusive and modestly supported clade consisting of Perkinsus and several environmental sequences. Because P. prorocentri possessed a novel combination of ultrastructural features known in Perkinsus, Parvilucifera , and/or syndineans (i.e. germ tubes, trichocysts, and a syndinean-like nucleus), establishing the molecular phylogenetic position of this species enabled us to build a more comprehensive framework for understanding the earliest stages in the evolution of myzozoans.  相似文献   

13.
Hoppenrath M  Leander BS 《PloS one》2010,5(10):e13220

Background

Interrelationships among dinoflagellates in molecular phylogenies are largely unresolved, especially in the deepest branches. Ribosomal DNA (rDNA) sequences provide phylogenetic signals only at the tips of the dinoflagellate tree. Two reasons for the poor resolution of deep dinoflagellate relationships using rDNA sequences are (1) most sites are relatively conserved and (2) there are different evolutionary rates among sites in different lineages. Therefore, alternative molecular markers are required to address the deeper phylogenetic relationships among dinoflagellates. Preliminary evidence indicates that the heat shock protein 90 gene (Hsp90) will provide an informative marker, mainly because this gene is relatively long and appears to have relatively uniform rates of evolution in different lineages.

Methodology/Principal Findings

We more than doubled the previous dataset of Hsp90 sequences from dinoflagellates by generating additional sequences from 17 different species, representing seven different orders. In order to concatenate the Hsp90 data with rDNA sequences, we supplemented the Hsp90 sequences with three new SSU rDNA sequences and five new LSU rDNA sequences. The new Hsp90 sequences were generated, in part, from four additional heterotrophic dinoflagellates and the type species for six different genera. Molecular phylogenetic analyses resulted in a paraphyletic assemblage near the base of the dinoflagellate tree consisting of only athecate species. However, Noctiluca was never part of this assemblage and branched in a position that was nested within other lineages of dinokaryotes. The phylogenetic trees inferred from Hsp90 sequences were consistent with trees inferred from rDNA sequences in that the backbone of the dinoflagellate clade was largely unresolved.

Conclusions/Significance

The sequence conservation in both Hsp90 and rDNA sequences and the poor resolution of the deepest nodes suggests that dinoflagellates reflect an explosive radiation in morphological diversity in their recent evolutionary past. Nonetheless, the more comprehensive analysis of Hsp90 sequences enabled us to infer phylogenetic interrelationships of dinoflagellates more rigorously. For instance, the phylogenetic position of Noctiluca, which possesses several unusual features, was incongruent with previous phylogenetic studies. Therefore, the generation of additional dinoflagellate Hsp90 sequences is expected to refine the stem group of athecate species observed here and contribute to future multi-gene analyses of dinoflagellate interrelationships.  相似文献   

14.
Monothalamous (single‐chambered) foraminifera have long been considered as the “poor cousins” of multichambered species, which calcareous and agglutinated tests dominate in the fossil record. This view is currently changing with environmental DNA surveys showing that the monothalamids may be as diverse as hard‐shelled foraminifera. Yet, the majority of numerous molecular lineages revealed by eDNA studies remain anonymous. Here, we describe a new monothalamous species and genus isolated from the sample of sea grass collected in Gulf of Eilat (Red Sea). This new species, named Leannia veloxifera, is characterized by a tiny ovoid theca (about 50–100 μm) composed of thin organic wall, with two opposite apertures. The examined individuals are multinucleated and show very active reticulopodial movement. Phylogenetic analyses of SSU rDNA, actin, and beta‐tubulin (ß‐tubulin) show that the species represents a novel lineage branching separately from other monothalamous foraminifera. Interestingly, the SSU rDNA sequence of the new species is very similar to an environmental foraminiferal sequence from Bahamas, suggesting that the novel lineage may represent a group of shallow‐water tropical allogromiids, poorly studied until now.  相似文献   

15.
Two real-time PCR assays targeting the small-subunit (SSU) ribosomal DNA (rDNA) were designed to assess the proportional biomass of diatoms and dinoflagellates in marine coastal water. The reverse primer for the diatom assay was designed to be class specific, and the dinoflagellate-specific reverse primer was obtained from the literature. For both targets, we used universal eukaryotic SSU rDNA forward primers. Specificity was confirmed by using a BLAST search and by amplification of cultures of various phytoplankton taxa. Reaction conditions were optimized for each primer set with linearized plasmids from cloned SSU rDNA fragments. The number of SSU rDNA copies per cell was estimated for six species of diatoms and nine species of dinoflagellates; these were significantly correlated to the biovolumes of the cells. Nineteen field samples were collected along the Swedish west coast and subjected to the two real-time PCR assays. The linear regression of the proportion of SSU rDNA copies of dinoflagellate and diatom origin versus the proportion of dinoflagellate and diatom biovolumes or biomass per liter was significant. For diatoms, linear regression of the number of SSU rDNA copies versus biovolume or biomass per liter was significant, but no such significant correlation was detected in the field samples for dinoflagellates. The method described will be useful for estimating the proportion of dinoflagellate versus diatom biovolume or biomass and the absolute diatom biovolume or biomass in various aquatic disciplines.  相似文献   

16.
The time of origin of the hominid lineage has long been debated. Macromolecular studies have consistently shown genetic distances between living humans and African apes to be quite small. The molecular clock hypothesis proposes that the time of separation of these lineages is relatively recent (in the range of 4–8 million years ago) and not 15 million years or more ago as usually suggested. Three independent molecular comparisons yield a mean estimate of 4.6 million years for the hominid-African pongid divergence. The relationship of Theropithecusand Papiois a parallel case within Primates of two taxa which are quite similar at the molecular level, but which are usually thought to have separated relatively long ago. The two cases of seeming discordance between different lines of evidence are analogous. Each involves a speciation event which eventually resulted in one substantially derived lineage and one or more relatively unchanged lineages. In each case, claims of the antiquity of the divergence event extend to at least twice the age of the first certain appearance of the more derived lineage in the fossil record. Finally, in each case, the molecular clock model suggests a range of possible divergence times that overlaps with the first appearances of undoubted hominids and Theropithecusin the fossil record. This test involving paleontological evidence supports the molecular clock hypothesis.  相似文献   

17.
Freshwater dinoflagellates still remain poorly studied by modern biological methods. This lack of knowledge prevents us from understanding the evolution and colonization patterns of these ecologically important protists. Gymnodinium baicalense is the most abundant, and possibly endemic, planktonic dinoflagellate from the ancient Lake Baikal. This dinoflagellate species blooms in the spring under the ice. This study analyzed the origin of this Baikalian dinoflagellate using three markers (two ribosomal and one mitochondrial DNA). It was found that this species is a true member of the order Gymnodiniales and has close relatives in the glacial melt waters of the Arctic Ocean. It seems that G. baicalense has diversified relatively recently from the arctic marine gymnodinioids. These results shed light on dinoflagellate biogeography and their colonizations in Lake Baikala biodiversity hotspot.  相似文献   

18.
The Triassic to Recent fossil record of the dinoflagellates is represented overwhelmingly by geologically resistant, organic-walled, non-motile resting cysts; such cysts are formed following the sexual phase in the life cycle. Very few confirmed records exist of the motile stage being preserved in the fossil record. This paper reports the occurrence of two very unusual dinoflagellate taphofacies, one developed in bituminous shales and the other in micrites, from the Oligocene fossil Lagerstätte at Sieblos, Hesse, Germany. A new dinoflagellate taxon, Sieblososphaera martini sp. nov. has been identified through analysis of dissociated skeletal elements in the bituminous shales and external moulds and casts in the micrites. The unique preservation of these fossils confirms them not only as primary biogenically silicified motile thecate cells, but also indicates that there was a much greater range of tabulation present within the subfamily Lithoperidiniaceae than has hitherto been recognized.  相似文献   

19.

Background  

Dinoflagellates represent a major lineage of unicellular eukaryotes with unparalleled diversity and complexity in morphological features. The monophyly of dinoflagellates has been convincingly demonstrated, but the interrelationships among dinoflagellate lineages still remain largely unresolved. Warnowiid dinoflagellates are among the most remarkable eukaryotes known because of their possession of highly elaborate ultrastructural systems: pistons, nematocysts, and ocelloids. Complex organelles like these are evolutionary innovations found only in a few athecate dinoflagellates. Moreover, the taxonomy of warnowiids is extremely confusing and inferences about the evolutionary history of this lineage are mired by the absence of molecular phylogenetic data from any member of the group. In this study, we provide the first molecular phylogenetic data for warnowiids and couple them with a review of warnowiid morphological features in order to formulate a hypothetical framework for understanding character evolution within the group. These data also enabled us to evaluate the evolutionary relationship(s) between warnowiids and the other group of dinoflagellates with complex organelles: polykrikoids.  相似文献   

20.
The Mesozoic fossil record has proved critical for understanding the early evolution and subsequent radiation of birds. Little is known, however, about its relative completeness: just how 'good' is the fossil record of birds from the Mesozoic? This question has come to prominence recently in the debate over differences in estimated dates of origin of major clades of birds from molecular and palaeontological data. Using a dataset comprising all known fossil taxa, we present analyses that go some way towards answering this question. Whereas avian diversity remains poorly represented in the Mesozoic, many relatively complete bird specimens have been discovered. New taxa have been added to the phylogenetic tree of basal birds, but its overall shape remains constant, suggesting that the broad outlines of early avian evolution are consistently represented: no stage in the Mesozoic is characterized by an overabundance of scrappy fossils compared with more complete specimens. Examples of Neornithes (modern orders) are known from later stages in the Cretaceous, but their fossils are rarer and scrappier than those of basal bird groups, which we suggest is a biological, rather than a geological, signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号