首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

2.
Abstract. Two 10-metre cores were analysed and a 37,500 year pollen stratigraphy was established for Lake Mala?i. A lowstand from 37,500 to 35,900 BP indicates extremely dry conditions. From 35,900 to 34,000 BP montane forests were widespread indicating cold, moist climate. Between 34,000 and 26,400 BP warm and dry conditions prevailed and forest area decreased. During the Last Glacial Maximum montane forest was widespread in the catchment, although woodlands apparently persisted at low altitudes: the expansion of the montane forest indicates that the aridity that affected equatorial Africa during this time period did not affect the Lake Mala?i Catchment. The cold and relatively moist conditions during the Late Pleistocene probably allowed biotic interchange between the highlands of East and West Africa via the highlands along the Zaire—Zambezi watershed and among now-isolated islands of Afromontane vegetation in the Lake Mala?i catchment. The Holocene is characterized by climate and vegetation quite similar to today, with indications of slightly wetter conditions between 6150 and 3000 bp and slightly drier conditions between 8000 and 6150 bp . The low percentages of montane forest pollen throughout the Holocene support the hypothesis that the montane grasslands of Mala?i are not recently anthropogenic.  相似文献   

3.
The presence of airborne Cyperaceae and Juncaceae pollen was quantified using volumetric aerobiological traps over a 10-year period at two sites in SW Spain separated by 60 km (Badajoz 10 years, Mérida 3 years). The Pearson correlation coefficient was calculated between the daily and hourly concentrations. The values of the principal meteorological parameters—temperature, rainfall, relative humidity, and speed and direction of the wind—were calculated during the study period, and with the accumulated values corresponding to the period prior to pollination. The beginning and ending dates and the duration of the main pollen season (MPS) were also analyzed. Even though both families are anemophilous, the presence of their pollens in the air was low. The annual accumulated daily concentrations were in the range 1.8–15.8 for Juncaceae and 111.8–473.9 for Cyperaceae—values far lower than any other anemophilous pollen type. The Cyperaceae pollen concentration peaked between 09:00 and 12:00. The meteorological factor most closely related to its daily variations was found to be the wind direction, showing that location of the sources is of great importance. The results lend support to the hypothesis of a limitation of allogamous reproduction in favour of vegetative multiplication in both families. Nevertheless, the principal source of the airborne Cyperaceae pollen was found to be Scirpus holoschoenus, whose pollen is distinguishable from the rest. Hence, because of its large production of pollen, this species can be characterized as anemophilous and allogamous. Rainfall in the preceding autumn seemed to be responsible for the amount of Cyperaceae pollen in the air, since a lack of rain was found to be associated with lower densities in the traps. For the Juncaceae, it seems that the temperatures of the preceding December constituted the most limiting meteorological parameter.  相似文献   

4.
Globally, montane tropical diversity is characterized by extraordinary local endemism that is not readily explained by current environmental variables indicating a strong imprint of history. Montane species often exist as isolated populations under current climatic conditions and may have remained isolated throughout recent climatic cycles, leading to substantial genetic and phenotypic divergence. Alternatively, populations may have become contiguous during colder climates resulting in less divergence. Here we compare responses to historical climate fluctuation in a montane specialist skink, Lampropholis robertsi, and its more broadly distributed congener, L. coggeri, both endemic to rainforests of northeast Australia. To do so, we combine spatial modelling of potential distributions under representative palaeoclimates, multi‐locus phylogeography and analyses of phenotypic variation. Spatial modelling of L. robertsi predicts strong isolation among disjunct montane refugia during warm climates, but with potential for localized exchange during the most recent glacial period. In contrast, predicted stable areas are more widespread and connected in L. coggeri. Both species exhibit pronounced phylogeographic structuring for mitochondrial and nuclear genes, attesting to low dispersal and high persistence across multiple isolated regions. This is most prominent in L. robertsi, for which coalescent analyses indicate that most populations persisted in isolation throughout the climate cycles of the Pleistocene. Morphological divergence, principally in body size, is more evident among isolated populations of L. robertsi than L. coggeri. These results highlight the biodiversity value of isolated montane populations and support the general hypothesis that tropical montane regions harbour high levels of narrow‐range taxa because of their resilience to past climate change.  相似文献   

5.
The relationship between modern pollen assemblages and modern vegetation along two elevational transects within the Transverse and Peninsular Ranges of southern California, USA, is demonstrated using cluster analysis of the pollen data. Cluster analysis separates the Sonora Desert vegetation, Valley grassland/agricultural land and chaparral vegetation types on the San Jacinto Mountains transect. Chaparral is not easily separated on the San Bernardino Mountains transect, probably due to the presence of Quercus dumosa (scrub oak) there. The lower montane QuercusPinus (oak – pine) community is distinct from other forest types, and can be subdivided palynologically based upon relative importance of Quercus, Pinus and Cupressaceae [primarily Calocedrus decurrens (incense cedar)] pollen. Subdivisions include QuercusPinus – Cupressaceae, Quercus – Cupressaceae – Pinus and QuercusPinus assemblages. Higher elevation PinusAbies (pine – fir) and Pinus-dominated communities are also differentiated from one another, although the subalpine vegetation type only occurs on the San Bernardino Mountains transect. Though the study area presently straddles a transition between winter-wet and summer-wet climatic regimes, differences between the pollen assemblages in the two mountain ranges are minimal. Pollen assemblages from lower elevations document the effects of human activities, primarily agriculture, on the modern pollen rain of the region, with the occurrence of introduced citrus (Citrus sp.) and shade (Eucalyptus sp.) trees and weedy disturbance indicators (e.g., Brassicaceae).  相似文献   

6.
Aim To reconstruct the flora, vegetation, climate and palaeoaltitude during the Miocene (23.03–5.33 Ma) in Central Europe. Location Six outcrop sections located in different basins of the Central Paratethys in Austria. Methods Pollen analysis was used for the reconstruction of the vegetation and climate. The altitude of the Eastern Alps that are adjacent to the Alpine Foreland and Vienna basins has been estimated using a new quantification method based on pollen data. This method uses biogeographical and climatological criteria such as the composition of the modern vegetation belts in the European mountains and Miocene annual temperature estimates obtained from fossil pollen data. Results Pollen changes from Early to Late Miocene have been observed. The vegetation during the Burdigalian and Langhian (20.43–13.65 Ma) was dominated by thermophilous elements such as evergreen trees, typical of a present‐day evergreen rain forest at low altitudes (i.e. south‐eastern China). During the Serravallian and Tortonian (13.65–7.25 Ma) several thermophilous elements strongly decreased, and some disappeared from the Central European region. This kind of vegetation was progressively substituted by one enriched in deciduous and mesothermic plants. Middle‐altitude (Cathaya, Cedrus and Tsuga) and high‐altitude (Abies and Picea) conifers increased considerably during the Langhian and later on during the Serravallian and Tortonian. Main conclusions Pollen changes are related to climatic changes and to the uplift of the Alpine massifs. The vegetation during the Burdigalian and Langhian reflects the Miocene climatic optimum. The decrease in thermophilous plants during the Serravallian and Tortonian can be interpreted as a climatic cooling and can be correlated with global and regional climatic changes. This study shows that the palaeoaltitude of the eastern part of the Eastern Alps during the Burdigalian was not high enough for Abies and Picea to form a forest. Therefore, we inferred that the summits of most of the mountains would have been less than 1800 m. The substantial increase of middle‐ and high‐altitude conifers in the pollen spectra suggests that the uplift rate increased during the Langhian in this region. Based on higher palaeoaltitude estimations for the pollen floras from the studied sections of Austria, we infer that the uplift of the easternmost part of the Alpine chain continued during the Serravallian and Tortonian.  相似文献   

7.
Pollen proteins that are located in the cytoplasm or on the surface of the exine can function as allergens and evoke immune system responses in sensitive patients, leading to allergic rhinitis and asthma. In this research, the pollen allergenicity and ability to induce IgE response of the pollen of two plant species were studied in rats. Acroptilon repens is an herbaceous, invasive plant with entomophilous pollen, while Juglans regia which is a tree crop produces anemophilous pollen. Immunoblot analysis using sera of sensitised rats revealed IgE reactivity to three protein bands including the 70, 41 and 25.12 kDa bands present in the A. repens pollen extract, while only one single immunogenic band of 11 kDa was detected in J. regia pollen extract. Both pollen extracts increased the eosinophil content and caused some clinical signs of allergy in treated rats. The results showed that both entomophilous and anemophilous pollen can be allergenic.  相似文献   

8.
Aim This study aims to separate regional and local controls on Holocene vegetation development and examine how well pollen records reflect climate change in a semi‐arid region. The relative importance of climate and human activity as agents of vegetation change in the Sahel during the late Holocene is also considered. Location Jikariya Lake, an inter‐dune depression in the Manga Grasslands of north‐eastern Nigeria. Methods Pollen and charcoal were used to provide a record of Holocene vegetation history. Palaeoclimate and hydrological changes were reconstructed from sedimentary and geochemical data. Regional and local influences were separated by comparing the evidence obtained from Jikariya Lake with previously published data from the Manga Grasslands. Results The Manga Grasslands experienced a prolonged wet period during the early and mid‐Holocene, during which swamp forest vegetation with Guinean affinities (Alchornea, Syzygium, Uapaca) occupied the inter‐dune depressions. However, variation in the pollen records between sites suggests that their establishment was dependent on conditions being locally favourable, rather than being directly coupled to regional climate. The pollen records from the Manga Grasslands are more consistent in suggesting the colonization of the dunefields by trees associated with Sudanian savanna (Combretaceae, Detarium) c. 8700 cal. yr bp . The Jikariya Lake pollen data are in accordance with the sedimentological and geochemical data from the region in indicating that the onset of arid conditions occurred progressively during the late Holocene (from c. 4700 cal. yr bp ). Abrupt changes in pollen stratigraphy, recorded at other Manga Grasslands sites 3500 cal. yr bp , appear to be the product of the local passing of ecological thresholds. The dunefield vegetation (Sahelian savanna) appears to have been resilient to (or at least palynologically silent regarding) to the climatic variability of the late Holocene. Main conclusions While climate appears to have been the primary control on vegetation development in the Manga Grasslands during the Holocene, local conditions (particularly depression size and sand influx) had a strong influence on the timing of pollen stratigraphic changes. Anthropogenic influences are difficult to detect, even during the late Holocene.  相似文献   

9.
New pollen results and radiocarbon dating from a valley mire in south-western Spain are presented. This is a region where few palaeoecological records have been preserved and the sequence yields important new palaeobotanical evidence for the late Holocene. The landscape is shown as having been largely open woodland, but more wooded than at present. The vegetation history of the last four millennia in these montane territories of south-western Iberia is discussed in the light of anthropogenic indicators, archaeological and documentary archives; fire incidence and climate change. Alnus is the predominant pollen type, although a decline is noted during the last couple of centuries. Its presence is connected with local topography behaving as a phreatophyte, that is, a plant which obtains a significant amount of water from the zone of saturated soil. A framework is also provided for the age and ecological dynamics of some major woodland taxa—Betula, Corylus, Ilex, evergreen and deciduous oaks, Ericaceae and Pinus. In addition, the natural status of several pollen taxa and local trends in biodiversity are discussed. We consider that the results of our work will have important implications for the understanding of the vegetation history in a floristically very rich area, with a noticeable diversity of woody taxa, and a relatively well preserved ecosystem structure.  相似文献   

10.
Some closely related members of the monocotyledonous familiesAlismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae andAraceae with variable modes of pollination (insect- and wind-pollination) were studied in relation to the ultrastructure of pollenkitt and exine (amount, consistency and distribution of pollenkitt on the surface of pollen grains). The character syndromes of pollen cementing in entomophilous, anemophilous and intermediate (ambophilous or amphiphilous) monocotyledons are the same in principal as in dicotyledons. Comparing present with former results one can summarize: 1) The pollenkitt is always produced in the same manner by the anther tapetum in all angiosperm sub-classes. 2) The variable stickiness of entomophilous and anemophilous pollen always depends on the particular distribution and consistency of the pollenkitt, but not its amount on the pollen surface. 3) The mostly dry and powdery pollen of anemophilous plants always contains a variable amount of inactive pollenkitt in its exine cavities. 4) A step-by step change of the pollen cementing syndrome can be observed from entomophily towards anemophily. 5) From the omnipresence of pollenkitt in all wind-pollinated angiosperms studied one can conclude that the ancestors of anemophilous angiosperms probably have been zoophilous (i.e. entomophilous) throughout.
  相似文献   

11.
Atmospheric pollen was collected with a Burkard spore trap in Ankara, Turkey, from January 1990 to January 1993. A total of 135.787 grains/m3 belonging to 47 taxa were observed. The local pollen season started in February in 1990 and 1991 and in March in 1992. Relatively low pollen concentrations were recorded in 1990 and 1992, probably because of precipitation and low wind speed in the spring. A relatively high pollen concentration was recorded in 1991 which could be caused by higher wind speed in the spring and more precipitation during the winter. Cupressaceae/Taxaceae, Pinaceae, Gramineae, Betula, Moraceae, Platanus, Populus, Acer, Quercus, Chenopodiaceae/Amaranthaceae, Plantago, Rumex are found to be the dominant pollen types in the atmosphere in Ankara. The pollen composition generally reflects the vegetation of gardens, parks and roadsides, while the natural steppe vegetation of the area around Ankara is not properly represented.  相似文献   

12.
The concept of an arid pleniglacial in the Middle East depends primarily on the interpretation of pollen diagrams including those of Lake Zeribar in the Zagros Mountains of western Iran. It has been assumed that Lake Zeribar was surrounded by a Chenopodiaceae-Artemisia steppe and that the climate was therefore dry. Both assumptions are questioned. The environment of Pleistocene Lake Zeribar may have been similar to the tragacanthic or alpine zone of the modern Zagros Mountains. The dominance by pollen of Chenopodiaceae and Artemisia is explained by low pollen production of high-altitude vegetation, preferential incorporation of pollen of late-blooming plants into the sediments, and high production and long-distance transport of lowland pollen. In any case, high percentages of Chenopodiaceae and Artemisia pollen do not necessarily indicate low annual precipitation but a highly seasonal climate with cold winters and hot, dry summers. Such a climatic regime was in effect continuous except for a period beginning about 10600 B. P. during which summer rainfall or reduced summer drought occurred. This change in seasonality resulted in the dominance of Poaceae pollen and the initial increase in arboreal pollen. A moisture curve based on the ratio between Chenopodiaceae and Artemisia pollen indicates a pleniglacial climate with wet winters and a late-glacial and early-Holocene climate with periods of intense aridity. The climatic history presented here is compatible with non-palynological evidence of regional late Pleistocene climates and with seasonality changes suggested by climatic modelling based on orbital parameters.Abbreviations C/A Chenopodiaceae-Artemisia ratio  相似文献   

13.
Three years of pollen trapping data from Barro Colorado Island, Panama, are compared with local vegetation inventories. Two hypotheses relating pollen representation to ‘messy’ pollination and flower form are tested. Dioecious taxa were found to be over‐represented in pollen spectra compared with their occurrence in local forests. Similarly, anemophilous and ‘messy’ pollination types were found to be over‐represented. While anemophilous taxa were the best dispersed pollen types, zoophilous taxa were also well‐represented in dispersal classes of 20–40 m and > 40 m. Thus pollen arriving to lake sediments is most likely to be from anemophilous species or those zoophilous species exhibiting ‘messy’ pollination syndromes. Pollination mechanisms will predictably bias the fossil record against certain flower morphologies. These data are of significance to those using the fossil pollen record to reconstruct the timing and sequence of angiosperm evolution. These data help prioritize plants to be included in modern pollen reference collections and to focus the search for ‘unknown’ types on most‐likely candidate families.  相似文献   

14.
Aims and location The potential of pollen records in quantitative climate reconstructions has been widely debated but seldom tested. Our aim is to develop a pollen–climate transfer function for northern Europe and test its performance and inference power by numerical cross‐validation with modern climate data. Annual mean temperature (Tann) was assessed as the critical climatic variable because Tann has a distinct south–north gradient (5.5 to ?4.7 °C) in the study region with a corresponding zonal vegetation gradient from the hemiboreal zone in the south to the northern boreal zone in the north. Methods We collected 137 pollen surface samples from small‐ to medium size lakes from southern Estonia to northern Finland. The transfer function for Tann was developed with weighted averaging partial least squares (WA‐PLS) regression. All 102 terrestrial pollen and spore types were included in the calculation sum and all 137 surface samples and all 102 taxa were included in the transfer function. The performance of the WA‐PLS transfer function was evaluated by leave‐one‐out cross‐validation. Results A cross‐validated root mean square error of prediction (RMSEP) of our model is 0.89 °C and the coefficient of determination (r2) between the observed meteorological Tann values and those predicted by the model in leave‐one‐out cross‐validation is 0.88. The RMSEP as a percentage of the gradient length of Tann is 8.8%. These figures indicate high performance statistics for our transfer function compared with other inference models. This is probably because of standardization of our surface‐sampling and pollen‐analytical procedures, careful selection of the surface sample sites with consideration of the relevant pollen source area, the simple patterns of vegetation zones and climate in the study area, and the mostly natural floristic composition of the forests in northern Europe. However, we also demonstrate the limitations of our model in reliably detecting fine‐scale climatic variability. Main conclusions The study shows the strong influence of Tann on modern pollen composition and demonstrates the potential of pollen data for long‐term climate reconstructions in northern Europe. It also provides evidence against simple interpretations of fine‐scale variations in a single climate reconstruction. In particular, our results highlight the importance of careful study design and implementation in the construction of pollen–climate transfer functions.  相似文献   

15.
Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen–vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 ± 0.432 for Artemisia and 5.379 ± 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 ± 0.012), whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the “Regional Estimates of Vegetation Abundance from Large Sites” (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen–vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO2 concentrations) and implications (such as for land surface–climate feedbacks, carbon storage, and biodiversity) of vegetation change.  相似文献   

16.
Based on pollen analysis, 17 honey samples collected in the Caatinga area from Nova Soure city were classified by botanical origin to identify the most important floral sources. Most of the honey samples were obtained in August and September. A total of 73 pollen types were identified belonging to 30 families, 64 genera and 30 species. The families best represented by their number of pollen types were Mimosaceae (11), Caesalpiniaceae (9), Rubiaceae and Fabaceae (5 each). Predominant pollen types were: Mimosa arenosa in four samples, M. sensitiva and M. tenuiflora in one sample. Pollen from Mimosa ursina was registered for the first time in the pollen spectrum of the Caatinga vegetation. The correspondence analysis showed a similarity among the honey samples based on pollen composition. The high representation of pollen from native species such as Chamaecrista nictitans, C. ramosa, C. swainsonii and Copaifera martii (Caesalpiniaceae); Aeschynomene martii and Zornia sericea (Fabaceae); Herissantia tiubae (Malvaceae); Mimosa arenosa, M. quadrivalvis, M. sensitiva, M. tenuiflora, M. ursina, Piptadenia moniliformis and Plathymenia reticulata (Mimosaceae), and Ziziphus joazeiro (Rhamnaceae) supports the origin of these honeys from Caatinga vegetation.  相似文献   

17.
Cyperaceae are characteristically anemophilous, but there are some reports of species re‐adapted to entomophily, such as Rhynchospora ciliata. Our objective was to investigate: (1) the distribution pattern of flowers in inflorescences of Rhynchospora ciliata; (2) the dynamics of its anthesis; and (3) whether R. ciliata is pollinated by bees, by wind or by both. Additionally, we tested the hypotheses: (i) the hypsophylls and/or anthers attract pollinators, and (ii) biotic vectors enhance the reproductive success of R. ciliata. We analysed floral biology, dynamics of anthesis, frequency and behaviour of insects visiting flowers; we also carried out experiments on flower attractiveness, pollination by wind and reproductive success. Rhynchospora ciliata has flowers with anemophilous attributes, including anthers exposed during anthesis; however, the anthers (here considered a mixed trait) together with the white hypsophylls can be considered as attributes that favour entomophily. Both wind and four species of bee were considered as pollen vectors of R. ciliata. Through flower attractiveness tests, we observed that the hypsophylls do not affect the frequency of pollinating bees and that the absence of exposed anthers affects the average number of visits, probably because pollen is the only floral resource. Reproductive tests indicate that R. ciliata is self‐incompatible and that ambophily enhances its reproductive success.  相似文献   

18.
Species of Echium are clearly entomophilous, but they release great amounts of pollen into the atmosphere with its consequent anemophilous transport, because their high pollen production, the smallness of the grains, and the exserted position of their anthers. Using three volumetric airborne sporetraps in Extremadura (SW of Spain) between 1994 and 1998, we found that Echium pollen reached pollen concentrations similar to or greater than other anemophilous plants. The main pollination period appeared from April to June. The maximum peak daily concentration reached 35.9 grains/m3 and the annual recorded totals showed interannual variations between 64.2 and 614.4. Correlations were calculated between the daily pollen concentrations and the meteorological parameters rain, temperature, wind direction and velocity and relative humidity. Wind direction seems to be significant, warm dry air seems to facilitate the release of pollen into the atmosphere and increase its concentrations. Hourly pollen concentration reached a maximum between 11:00 and 12:00 and a minimum at 07:00, and the patterns were very similar in the three localities studied. This would indicate that the presence of Echium pollen in the atmosphere is related to the processes of anthesis of the populations near the traps, and would not correspond to a model of transport from distant zones.  相似文献   

19.
Human activity has been widely implicated in the origin and expansion of montane grasslands in East Africa, yet little palaeoecological evidence exists to test whether these grasslands are natural or secondary. Pollen and charcoal data derived from two Holocene records in the Eastern Arc mountains of Tanzania are used as a case study to investigate the supposed secondary nature of montane grasslands in Africa. Fossil pollen data are used to detect vegetation change, and charcoal analysis is used to reconstruct fire history. The pollen data are characterised by stable proportions of local taxa suggesting permanence of grasslands throughout the past ~13,000 years. Recent increases in fire adapted taxa such as Morella point towards the development of a grassland/forest patch mosaic possibly associated with burning. However, robust evidence of human activity is absent from the records, which may be attributed to the late human occupation of the mountains. The records indicate long-term persistence of grasslands which, coupled with a lack of evidence of human activity, suggests that these grasslands are not secondary. These data support the hypothesis that grasslands are an ancient and primary component of montane vegetation in Africa, but that they experienced some expansion during the late Holocene as a result of changing fire regime.  相似文献   

20.
Abstract. A long pollen record from lowland Panama describes the vegetation during glacial times and probably includes a history of the last 150 000 yr, thus representing a complete glacial cycle. The record is from sediments of an extinct caldera lake under the town of El Valle. Throughout most of the last glacial period oaks and other plants of the modern montane forest maintained significant populations about 700 m lower than present. Immediately before the 14000 B.P. start ofthe late glacial period oaks had reached to 1000 m below present limits. These data require significant temperature depressions, perhaps in the order of 4 - 6 °C at some seasons ofthe year. Lowland forest taxa persisted in the neighbourhood of El Valle throughout the glacial period, however, suggesting reassortment of plant populations into communities without modern analog. Although our reconstruction of levels ofthe El Valle lake in the period 30 000 to 12 000 B.P. suggests less precipitation than in modern times, the lowland climate appears to have been moist enough for taxa of tropical forests to persist. The montane floras of the western and eastern Panama highlands did not merge at any time in the glacial cycle and an hypothesis of dispersal between enlarged areas of montane forest is put forward to explain modern disjunctions in Quer cus distributions. The wet highlands of Panama were never refugia for tropical rain forest taxa at any time during the Quaternary, rather rain forest species existed in unfamiliar communities in the Panamanian lowlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号