首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chi EY  Frey SL  Lee KY 《Biochemistry》2007,46(7):1913-1924
There is increasing evidence that a class of cell membrane glycolipids, gangliosides, can mediate the fibrillogenesis and toxicity of Alzheimer's disease amyloid-beta peptide (Abeta). Using lipid monolayers and vesicles as model membranes, we measured the insertion of Abeta into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)-ganglioside GM1 monolayers to probe Abeta-GM1 interactions, imaged the effects of Abeta insertion on monolayer morphology, and measured the rate of Abeta fibril formation when incubated with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-GM1 vesicles. Furthermore, the location of Abeta association in the monolayer was assessed by dual-probe fluorescence experiments. Abeta exhibited direct and favorable interactions with GM1 as Abeta insertion monotonically increased with GM1 concentration, despite increases in monolayer rigidity at low GM1 levels. At low GM1 concentrations, Abeta preferentially inserted into the disordered, liquid expanded phase. At higher GM1 concentrations, Abeta inserted more uniformly into the monolayer, resulting in no detectable preferences for either the disordered or condensed phase. Abeta insertion led to the disruption of membrane morphology, specifically to the expansion of the disordered phase at low GM1 concentrations and significant disruption of the condensed domains at higher GM1 concentrations. During incubation with POPC vesicles containing physiological levels of GM1, the association of Abeta with vesicles seeded the formation of Abeta fibrils. In conclusion, favorable interactions between Abeta and GM1 in the cell membrane may provide a mechanism for Abeta fibrillogenesis in vivo, and Abeta-induced disruption of the cell membrane may provide a pathway by which Abeta exerts toxicity.  相似文献   

2.
GM1 ganglioside-bound amyloid beta-protein (GM1/Abeta), found in brains exhibiting early pathological changes of Alzheimer's disease (AD) including diffuse plaques, has been suggested to be involved in the initiation of amyloid fibril formation in vivo by acting as a seed. To elucidate the molecular mechanism underlying GM1/Abeta formation, the effects of lipid composition on the binding of Abeta to GM1-containing lipid bilayers were examined in detail using fluorescent dye-labeled human Abeta-(1-40). Increases in not only GM1 but also cholesterol contents in the lipid bilayers facilitated the binding of Abeta to the membranes by altering the binding capacity but not the binding affinity. An increase in membrane-bound Abeta concentration triggered its conformational transition from helix-rich to beta-sheet-rich structures. Excimer formation of fluorescent dye-labeled GM1 suggested that Abeta recognizes a GM1 "cluster" in membranes, the formation of which is facilitated by cholesterol. The results of the present study strongly suggested that increases in intramembrane cholesterol content, which are likely to occur during aging, appear to be a risk factor for amyloid fibril formation.  相似文献   

3.
GM1 ganglioside-bound amyloid beta-protein (GM1-Abeta), found in brains exhibiting early pathological changes of Alzheimer's disease (AD) plaques, has been suggested to accelerate amyloid fibril formation by acting as a seed. We have previously found using dye-labeled Abeta that Abeta recognizes a GM1 cluster, the formation of which is facilitated by cholesterol [Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., and Matsuzaki, K. (2001) J. Biol. Chem. 276, 24985-24990]. In this study, we investigated the ganglioside species-specificity in its potency to induce a conformational change of Abeta, by which ganglioside-bound Abeta acts as a seed for Abeta fibrillogenesis, using a major ganglioside occurring in brains (GM1, GD1a, GD1b, and GT1b) in raft-like membranes composed of cholesterol and sphingomyelin. Abeta recognized ganglioside clusters, the density of which increased with the number of sialic acid residues. Interestingly, however, mixing of gangliosides inhibited cluster formation. In contrast, the affinities of the protein for the clusters were similar irrespective of lipid composition and of the order of 10(6) M(-)(1) at 37 degrees C. Abeta underwent a conformational transition from an alpha-helix-rich structure to a beta-sheet-rich structure with the increase in protein density on the membrane. Ganglioside-bound Abeta proteins exhibited seeding abilities for amyloid formation. GM1-Abeta exhibited the strongest seeding potential, especially under beta-sheet-forming conditions. This study suggested that lipid composition including gangliosides and cholesterol strictly controls amyloid formation.  相似文献   

4.
The aggregation (fibril formation) of amyloid beta-protein (Abeta) is considered to be a crucial step in the etiology of Alzheimer's disease (AD). The inhibition of Abeta aggregation and/or decomposition of fibrils formed in aqueous solution by small compounds have been studied extensively for the prevention and treatment of AD. However, recent studies suggest that Abeta aggregation also occurs in lipid rafts mediated by a cluster of monosialoganglioside GM1. This study examined the effects of representative compounds on Abeta aggregation and fibril destabilization in the presence of GM1-containing raft-like liposomes. Among the compounds tested, nordihydroguaiaretic acid (NDGA), rifampicin (RIF), tannic acid (TA), and quercetin (QUE) showed strong fibrillization inhibitory activity. NDGA and RIF inhibited the binding of Abeta to GM1 liposomes by competitively binding to the membranes and/or direct interaction with Abeta in solution, thus at least partly preventing fibrils from forming. Coincubation of Abeta with NDGA, RIF, and QUE in the presence of GM1 liposomes resulted in elongate particles, whereas the presence of TA yielded protofibrillar structures. TA and RIF also destabilized fibrils. The most potent NDGA prevented Abeta-induced toxicity in PC12 cells by inhibiting Abeta accumulation. Furthermore, a comparison of the inhibitory effects of various compounds between aqueous-phase and GM1-mediated aggregation of Abeta suggested that the two aggregation processes are not identical.  相似文献   

5.
Identifying the mechanisms responsible for the assembly of proteins into higher-order structures is fundamental to structural biology and understanding specific disease pathways. The amyloid-beta (Abeta) peptide is illustrative in this regard as fibrillar deposits of Abeta are characteristic of Alzheimer's disease. Because Abeta includes portions of the extracellular and transmembrane domains of the amyloid precursor protein, it is crucial to understand how this peptide interacts with cell membranes and specifically the role of membrane structure and composition on Abeta assembly and cytotoxicity. We describe the results of a combined circular dichroism spectroscopy, electron microscopy, and in situ tapping mode atomic force microscopy (TMAFM) study of the interaction of soluble monomeric Abeta with planar bilayers of total brain lipid extract. In situ extended-duration TMAFM provided evidence of membrane disruption via fibril growth of initially monomeric Abeta1-40 peptide within the total brain lipid bilayers. In contrast, the truncated Abeta1-28 peptide, which lacks the anchoring transmembrane domain found in Abeta1-40, self-associates within the lipid headgroups but does not undergo fibrillogenesis. These observations suggest that the fibrillogenic properties of Abeta peptide are in part a consequence of membrane composition, peptide sequence, and mode of assembly within the membrane.  相似文献   

6.
Oxidative lipid membrane damage is known to promote the misfolding of Abeta42 into pathological beta structure. In fully developed senile plaques of Alzheimer's disease, however, it is the shorter and more soluble amyloid beta protein, Abeta40, that predominates. To investigate the role of oxidative membrane damage in the misfolding of Abeta40, we have examined its interaction with supported lipid monolayer membranes using internal reflection infrared spectroscopy. Oxidatively damaged lipids modestly increased Abeta40 accumulation, with adsorption kinetics and a conformation that are distinct from that of Abeta42. In stark contrast, pretreatment of oxidatively damaged monolayer membranes with Abeta42 vigorously promoted Abeta40 accumulation and misfolding. Pretreatment of saturated or undamaged membranes with Abeta42 had no such effect. Parallel studies of lipid bilayer vesicles using a dye binding assay to detect fibril formation and electron microscopy to examine morphology demonstrated that Abeta42 pretreatment of oxidatively damaged membranes promoted the formation of mature Abeta40 amyloid fibrils. We conclude that oxidative membrane damage and Abeta42 act synergistically at an early stage to promote fibril formation by Abeta40. This synergy could be detected within minutes using internal reflection spectroscopy, whereas a dye-binding assay required several days and much higher protein concentrations to demonstrate this synergy.  相似文献   

7.
Aging and apolipoprotein E4 (apoE4) expression are strong risk factors for the development of Alzheimer's disease (AD); however, their pathological roles remain to be clarified. In the process of AD development, the conversion of the nontoxic amyloid beta-protein (Abeta) monomer to its toxic aggregates is a fundamental process. We previously hypothesized that Abeta aggregation is accelerated through the generation of GM1 ganglioside (GM1)-bound Abeta which acts as a seed for Abeta fibril formation. Here we report that GM1 level in detergent-resistant membrane microdomains (DRMs) of synaptosomes increased with age and that this increase was significantly pronounced in the apoE4- than the apoE3-knock-in mouse brain. Furthermore, we show that Abeta aggregation is markedly accelerated in the presence of the synaptosomes of the aged apoE4-knock-in mouse brain. These observations suggest that aging and apoE4 expression cooperatively accelerate Abeta aggregation in the brain through an increase in the level of GM1 in neuronal membranes.  相似文献   

8.
Abeta(1-42) peptide, found as aggregated species in Alzheimer's disease brain, is linked to the onset of Alzheimer's disease. Many reports have linked metals to inducing Abeta aggregation and amyloid plaque formation. Abeta(25-35), a fragment from the C-terminal end of Abeta(1-42), lacks the metal coordinating sites found in the full-length peptide and is neurotoxic to cortical cortex cell cultures. We report solid-state NMR studies of Abeta(25-35) in model lipid membrane systems of anionic phospholipids and cholesterol, and compare structural changes to those of Abeta(1-42). When added after vesicle formation, Abeta(25-35) was found to interact with the lipid headgroups and slightly perturb the lipid acyl-chain region; when Abeta(25-35) was included during vesicle formation, it inserted deeper into the bilayer. While Abeta(25-35) retained the same beta-sheet structure irrespective of the mode of addition, the longer Abeta(1-42) appeared to have an increase in beta-sheet structure at the C-terminus when added to phospholipid liposomes after vesicle formation. Since the Abeta(25-35) fragment is also neurotoxic, the full-length peptide may have more than one pathway for toxicity.  相似文献   

9.
Acute cholecystitis develops in gallbladders (GB) with excessive bile cholesterol (Ch). Increased membrane Ch content affects membrane function and may affect PGE(2) receptors involved in the cytoprotection against acute inflammation. This study was aimed at determining whether the cytoprotective response to PGE(2) is affected by lithogenic bile with Ch. Muscle cells from human GB with cholesterol stones (ChS) or pigment stones (PS) were obtained by enzymatic digestion. PGE(2) levels were measured by radioimmunoassay, and activities of superoxide dismutase (SOD) and catalase were assayed by spectrophotometry. The contraction in response to H(2)O(2) in muscle cells from PS was 14 +/- 0.3%, not different from normal controls, and decreased after the cells were incubated with Ch-rich liposomes (P < 0.05), which increase the Ch content in the plasma membranes. In muscle cells from GB with ChS, H(2)O(2)-induced contraction was only 9.2 +/- 1.3% and increased to 14 +/- 0.2% after Ch-free liposome treatment to remove Ch from the plasma membranes (P < 0.01). H(2)O(2) caused a similar increase in the levels of lipid peroxidation and PGE(2) content in muscle cells from GBs with ChS and PS. However, the activities of SOD and catalase were significantly lower in muscle cells from GBs with ChS compared with those with PS. The binding capacity of PGE(2) receptors was also significantly lower in muscle cells from GBs with ChS compared with those with PS. In conclusion, the cytoprotective response to reactive oxygen species is reduced in muscle cells from GBs with ChS despite a normal increase in the cellular levels of PGE(2). This impaired cytoprotective response may be due to a dysfunction of PGE(2) receptors with decreased binding capacity resulting from excessive Ch levels in the plasma membrane.  相似文献   

10.
The 39-42 amino acid long, amphipathic amyloid-beta peptide (Abeta) is one of the key components involved in Alzheimer's disease (AD). In the neuropathology of AD, Abeta presumably exerts its neurotoxic action via interactions with neuronal membranes. In our studies a combination of 31P MAS NMR (magic angle spinning nuclear magnetic resonance) and CD (circular dichroism) spectroscopy suggest fundamental differences in the functional organization of supramolecular Abeta(1-40) membrane assemblies for two different scenarios with potential implication in AD: Abeta peptide can either be firmly anchored in a membrane upon proteolytic cleavage, thereby being prevented against release and aggregation, or it can have fundamentally adverse effects when bound to membrane surfaces by undergoing accelerated aggregation, causing neuronal apoptotic cell death. Acidic lipids can prevent release of membrane inserted Abeta(1-40) by stabilizing its hydrophobic transmembrane C-terminal part (residue 29-40) in an alpha-helical conformation via an electrostatic anchor between its basic Lys28 residue and the negatively charged membrane interface. However, if Abeta(1-40) is released as a soluble monomer, charged membranes act as two-dimensional aggregation-templates where an increasing amount of charged lipids (possible pathological degradation products) causes a dramatic accumulation of surface-associated Abeta(1-40) peptide followed by accelerated aggregation into toxic structures. These results suggest that two different molecular mechanisms of peptide-membrane assemblies are involved in Abeta's pathophysiology with the finely balanced type of Abeta-lipid interactions against release of Abeta from neuronal membranes being overcompensated by an Abeta-membrane assembly which causes toxic beta-structured aggregates in AD. Therefore, pathological interactions of Abeta peptide with neuronal membranes might not only depend on the oligomerization state of the peptide, but also the type and nature of the supramolecular Abeta-membrane assemblies inherited from Abeta's origin.  相似文献   

11.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

12.
In flow cytometry using two detecting methods, we have found that amyloid-beta-protein(1-40) [Abeta(1-40)] has high affinity to IMR-32 neuroblastoma cell membrane when it is aggregated to form beta-sheet conformation, whereas random coil small Abeta-species has low affinity. The difference in the binding ability to the cell membranes well accounts for the cytotoxicity of Abeta(1-40); namely, aggregated beta-sheet Abeta(1-40) gives cytotoxicity higher than random coil Abeta(1-40). Specific binding between Abeta(1-40) and ganglioside GM1 of the raft-like domain in lipid membrane is suggested from a surface plasmon resonance (SPR) experiment.  相似文献   

13.
Plantaricin A (plA) is a 26-residue bacteria-produced peptide pheromone with membrane-permeabilizing antimicrobial activity. In this study the interaction of plA with membranes is shown to be highly dependent on the membrane lipid composition. PlA bound readily to zwitterionic 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) monolayers and liposomes, yet without significantly penetrating into these membranes. The presence of cholesterol attenuated the intercalation of plA into SOPC monolayers. The association of plA to phosphatidylcholine was, however, sufficient to induce membrane permeabilization, with nanomolar concentrations of the peptide triggering dye leakage from SOPC liposomes. The addition of the negatively charged phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol POPG (SOPC/POPG; molar ratio 8:2) enhanced the membrane penetration of the peptide, as revealed by (i) peptide-induced increment in the surface pressure of lipid monolayers, (ii) increase in diphenylhexatriene (DPH) emission anisotropy measured for bilayers, and (iii) fluorescence characteristics of the two Trps of plA in the presence of liposomes, measured as such as well as in the presence of different quenchers. Despite deeper intercalation of plA into the SOPC/POPG lipid bilayer, much less peptide-induced dye leakage was observed for these liposomes than for the SOPC liposomes. Further changes in the mode of interaction of plA with lipids were evident when also the zwitterionic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphoethanolaminne (POPE) was present (SOPC/POPG/POPE, molar ratio 3:2:5), thus suggesting increase in membrane spontaneous negative curvature to affect the mode of association of this peptide with lipid bilayer. PlA induced more efficient aggregation of the SOPC/POPG and SOPC/POPG/POPE liposomes than of the SOPC liposomes, which could explain the attenuated peptide-induced dye leakage from the former liposomes. At micromolar concentrations, plA killed human leukemic T-cells by both necrosis and apoptosis. Interestingly, plA formed supramolecular protein-lipid amyloid-like fibers upon binding to negatively charged phospholipid-containing membranes, suggesting a possible mechanistic connection between fibril formation and the cytotoxicity of plA.  相似文献   

14.
The Alzheimer's disease-related peptide beta-amyloid (Abeta) is toxic to neurons. The toxicity of the peptide appears to require conversion of the monomeric form to an aggregated fibrillar species. The interaction of Abeta with cell membranes has attracted interest as one plausible mechanism by which the peptide exerts its toxic activity. We developed two methods to measure the adsorption of fresh (monomeric) and aged (aggregated) Abeta to lipid bilayers. In one method, the kinetics of Abeta adsorption and desorption to liposomes deposited onto a dextran-coated surface was measured using surface plasmon resonance. In the other method, Abeta was contacted with liposome-coated magnetic beads; adsorbed Abeta was separated from solution-phase peptide by use of a magnetic field. Monomeric Abeta adsorbed quickly but reversibly to lipid bilayers with low affinity, while aggregated Abeta adsorbed slowly but irreversibly. These two methods provide complementary means of quantifying the adsorption of aggregating proteins to membranes. The results correlate strongly with previous observations that fibrillar, but not monomeric, Abeta restricts the motion of acyl tails in phospholipid bilayers. The methods should be useful for further elucidation of the role of membrane adsorption in mediating Abeta toxicity, and in the search for inhibitors of toxicity.  相似文献   

15.
Interaction of full length recombinant hamster prion protein with liposomes mimicking lipid rafts or non-raft membrane regions was studied by circular dichroism, chemical cross-linking and sucrose gradient ultracentrifugation. At pH 7.0, the protein bound palmitoyloleoylphosphatidylcholine/cholesterol/sphingomyelin/monosialoganglioside GM1 (GM1) ganglioside liposomes but not palmitoyloleoylphosphatidylcholine alone (bound/free=0.33 and 0.01, respectively), maintaining the native alpha-helical structure and monomeric form. At pH 5.0, though still binding to quaternary mixtures, in particular GM1, the protein bound also to palmitoyloleoylphosphatidylcholine (bound/free 0.35) becoming unfolded and oligomeric. The pH-dependent interaction with raft or non-raft membranes might have implication in vivo, by stabilizing or destabilizing the protein.  相似文献   

16.
There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the accumulation of beta-amyloid peptides into senile plaques, one of the hallmarks of Alzheimer's disease (AD). With the aim to clarify the molecular basis of the interaction between amyloid peptides and cellular membranes, we investigated the interaction between a cytotoxic fragment of Abeta(1-42), i.e., Abeta(25-35), and phospholipid bilayer membranes. These systems were studied by Electron Paramagnetic Resonance (EPR) spectroscopy, using phospholipids spin-labeled on the acyl chain. The effect of inclusion of charged phospholipids or/and cholesterol in the bilayer composition was considered in relation to the peptide/membrane interaction. The results show that Abeta(25-35) inserts in bilayers formed by the zwitterionic phospholipid dilauroyl phosphatidylcholine (DLPC), positioning between the outer part of the hydrophobic core and the external hydrophilic layer. This process is not significantly influenced by the inclusion of the anionic phospholipid phosphatidylglycerol (DLPG) in the bilayer, indicating the peptide insertion to be driven by hydrophobic rather than electrostatic interactions. Cholesterol plays a fundamental role in regulating the peptide/membrane association, inducing a membrane transition from a fluid-disordered to a fluid-ordered phase. At low cholesterol content, in the fluid-disordered phase, the insertion of the peptide in the membrane causes a displacement of cholesterol towards the more external part of the membrane. The crowding of cholesterol enhances its rigidifying effect on this region of the bilayer. Finally, the cholesterol-rich fluid-ordered membrane looses the ability to include Abeta(25-35).  相似文献   

17.
Suzuki K  Okumura Y 《Biochemistry》2000,39(31):9477-9485
Exposure of cells to liposomes results in the release of integral membrane proteins. However, it is still controversial whether the release is due to spontaneous protein transfer from cells to liposomes or shed vesicles released from cells. We investigated this issue in an erythrocyte-liposome system by examining the location of acetylcholinesterase (AChE, an integral membrane protein marker), cholesterol (erythrocyte membrane lipid marker), hemoglobin (cytosolic protein marker), and a nonexchangeable lipid marker in liposomes in a sucrose density gradient at high resolution. The density distribution showed that AChE is not transferred to the liposomes but is located on small (about 50 nm) light (10-20 wt % sucrose) or large (about 200 nm) heavy shed vesicles (more than 30 wt % sucrose). AChE in the light shed-vesicle fraction markedly increased even after its level in the heavy fraction reached a plateau. AChE was also released from isolated heavy shed vesicles and accumulated in the small light shed-vesicle fraction in the presence of liposomes. After incubation of spherical erythrocytes (morphological index, 5.0) with liposomes, AChE hardly appeared in the heavy shed-vesicle fraction, and the majority (>99%) appeared in the light shed-vesicle fraction, indicating that AChE is released from both the erythrocytes and heavy shed vesicles to the light shed-vesicle fraction, which becomes rich in AChE. Our results demonstrated for the first time that GPI-linked proteins do not spontaneously transfer from erythrocytes to liposomes. Our study also suggests that in vivo GPI-linked membrane proteins do not spontaneously transfer between cell membranes but that some catalyst is needed.  相似文献   

18.
Muscle cells from human gallbladders (GB) with cholesterol stones (ChS) exhibit a defective contraction, excess cholesterol (Ch) in the plasma membrane, and lower binding of CCK-1 receptors. These abnormalities improved after muscle cells were incubated with Ch-free liposomes that remove the excess Ch from the plasma membrane. The present studies were designed to investigate the role of caveolin-3 proteins (Cav-3) in the pathogenesis of these abnormalities. Muscle cells from GB with ChS exhibit higher Ch levels in the plasma membrane that were mostly localized in caveolae and associated with parallel increases in the expression of Cav-3 in the caveolae compared with that in GB with pigment stones (PS). The overall number of CCK-1 receptors in the plasma membrane was not different between muscle cells from GB with ChS and PS, but they were increased in the caveolae in muscle cells from GB with ChS. Treatment of muscle cells from GB with ChS with a Galpha(i3) protein fragment increased the total binding of CCK-1 receptors (from 8.3 to 11.2%) and muscle contraction induced by CCK-8 (from 11.2 to 17.3% shortening). However, Galpha(q/11) protein fragment had no such effect. Moreover, neither fragment had any effect on muscle cells from GB with PS. We conclude that the defective contraction of muscle cells with excessive Ch levels in the plasma membrane is due to an increased expression of Cav-3 that results in the sequestration of CCK-1 receptors in the caveolae, probably by inhibiting the functions of Galpha(i3) proteins.  相似文献   

19.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel beta-sheet structure, and subsequently, was further refined for Abeta(1-40) to be cross beta-sheet with double layered in register parallel beta-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel beta-sheet structure has been reported to short fragments of Abeta-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

20.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号