首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological response of an estuarine clone of Nitzschia americana Fryx3ell was measured under experimental conditions of temperature and salinity which represent the average range of these variables in the Cape Fear River Estuary, North Carolina. The influence of temperature (10, 15, 20, 25, 30°C) and salinity (8, 15, 20, 26, 32‰) on specific growth rates, μ, and parameters of photosynthesis-irradiance curves, α, and Pmax were measured during maximum and minimum rates of diurnal photosynthesis using axenic semi-continuous batch cultures maintained at an irradiance saturating for photosynthesis (140 μE m-2·s-1). There was an increase in μ with increasing temperature up to a broad uptimum (25 ± 2.5°C), above which μ gradually declined. At the predicted optimum temperature of 25°C, μ increased as a linear function of salinity. oth light-limited (α) amd light-saturated (Pmax) rates of photosynthesis increased as salinity decreased. The effect of temperature on a and Pmax was complex and dependent on salinity. Pmax exhibited a diurnal periodicity, whereas estimates of a were not significantly different between sampling periods. Growth efficiencey opf N. americana, calculated as the ratio between specific growth rates and rates of gross photosynthesis, increased with an increase in salinity with a maximum at the predicted optimum temperature and salinity of 25°C and 32‰, suggesting and uncoupling between photosynthesis and growth at nonoptimum growth conditions.  相似文献   

2.
The bloom-forming marine dinoflagellate Gyrodinium cf. aureolumwas grown in batch cultures over a range of irradiances (35–380µmolm–2 s–1 and growth, photosynthesis and respirationrates determined. Saturation of growth occurred at irradiancesof 100µmol m–2 s–1 Below this light level,decreases in growth rates and cell size, and a relative increasein carbon specific respiration rates, were observed. On theother hand, photosynthesis-irradiance relationships determinedfrom dissolved oxygen incubations showed that on a cellularand carbon basis, cultures grown at low irradiances had higherrates of light-limited and light-saturated photosynthesis, mainlyas a result of large increases in cell chlorophyll content.This adaptation strategy enables low-light-grown organisms toexploit available high irradiance through a relatively highphotosynthetic capacity. In cells grown at higher light levels(>100µmol m–2 s–1), excess photosynthatemay be diverted to storage rather than used for growth.  相似文献   

3.
The effects of temperature, salinity and irradiance on the growthof the harmful red tide dinoflagellate Cochlodinium polykrikoideswere examined in the laboratory. From 60 different combinationsof temperature (10–30°C) and salinity (10–40)under saturated irradiance, C. polykrikoides exhibited its maximumspecific growth rate of 0.41 day-1 at a combination of 25°Cand salinity of 34. Optimum growth rates of >0.3 day-1 wereobserved at temperatures ranging from 21 to 26°C and atsalinities from 30 to 36. The organism did not grow at temperatures10°C and only grew at salinities >30 if the temperaturewas >15°C. It was able to grow in temperatures rangingfrom 15 to 30°C and at salinities from 20 to 36. These valuesclosely resembled those observed for this species in situ. Itappears as if C. polykrikoides is a stenohaline organism thatprefers high salinities, indicative of offshore waters. Temperaturehad the greatest influence on the growth rate, followed by salinity,and then the interaction between temperature and salinity. Theoptimum irradiance for growth was >90 µmol m-2 s-1.Photoinhibition did not occur at 230 µmol m-2 s-1, whichwas the maximum irradiance used in this study.  相似文献   

4.
Laboratory studies were performed to determine the effect oftemperature, salinity, seawater sources and culture media onthe vegetative growth of clonal cultures of Gymnodinium catenatumisolated from Bahía Concepción, Mexico. Theseisolates were heterothallic and isogamous. Exponential growthrates of G. catenatum in f/2 with different selenium concentrationsand soil extract and GSe media were moderate. Maximum cell yieldswere obtained in GSe and f/2 media with selenium (10–8and 10–7 M), while in f/2 medium with soil extract cellyields were considerably lower. The highest percentage of longchains was found in f/2 media supplied with selenium (10–8M). The optimal temperature range for growth was 11.5–30°C,with the highest growth rates between 21 and 29°C. The rangeof salinity tolerated by G. catenatum changed with seawatersource. With seawater from Vineyard Sound (Massachusetts, USA),G. catenatum grew at salinities from 15 to 36, with an optimalgrowth rate obtained at salinities between 26 and 30. With seawaterfrom Bahía Concepción, this species toleratedsalinities from 25 to 40, with optimal growth at salinitiesbetween 28 and 38. Ecophysiological measurements reported hereare consistent with the environment of the bay, which has limitedinput of humic materials from runoff and high salinity and temperature.These data, when viewed with data from studies of globally distributedG. catenatum, demonstrate the ability of this species to livein a broad array of habitats.  相似文献   

5.
Growth responses of the red tide flagellates, Heterocapsa circularisquama(Dinophyceae) and Chattonella verruculosa (Raphidophyceae),were examined with 36 different combinations of temperature(5–30°C) and salinity (10–35 PSU). Heterocapsacircularisquama did not grow at or below a temperature of 10°C.The maximum growth rate of H.circularisquama (1.3 divisionsday–1) was obtained with a combination of 30°C and30 PSU. In contrast, C. verruculosa did not grow at 10 PSU andat temperatures of 25°C or more. The maximum growth rateof C. verruculosa (1.74 divisions day–1) was obtainedwith a combination of 15°C and 25 PSU. A significant temperature-salinityinteraction on growth was found by factorial analysis. Basedon the physiological characteristics obtained in the presentstudy, these novel flagellates have a potential for future outbreaksof red tides in pre viously unaffected waters.  相似文献   

6.
Ingestion, respiration, and molting loss rates were measuredover the 3 – 29°C range in Neomysis intermedia. Weightspecific rates of these physiological processes ranged from2 to 140% body C day–1 for ingestion, from 2 to 15% bodyC day–1 for respiration, and from 0.1 to 5% body C day–1for molting loss. All weight-specific rates showed a logarithmicdecrease with a logarithmic increase in body weight, and a logarithmicincrease with a linear increase in temperature below 20 or 25°C.The effect of temperature, however, was different between thephysiological rates, with a large temperature dependency foringestion (Q10 = 2.6 –3.9) and molting loss (Q10 = 2.9– 3.6) and a moderate temperature dependency for respiration(Q10 = 1.9 – 2.1). Calculated assimilation efficiencychanged with body size, but was constant over the temperaturerange examined. Allocation of assimilated materials varied witha change in temperature, reflecting the different temperaturedependence between physiological processes. It was deduced thatthe strong temperature dependency of the growth rate in N. intermediaobserved in the previous studies resulted from the large temperatureeffect on ingestion and assimilation rates, superimposed bythe different allocation of assimilated materials. 1Present address: Department of Botany, University of Tokyo,Hongo, Tokyo 113, Japan  相似文献   

7.
The rates of CO2 assimilation by potted spray carnation plants(cv. Cerise Royalette) were determined over a wide range oflight intensities (45–450 W m–2 PAR), CO2 concentrations(200–3100 vpm), and leaf temperatures (5–35 °C).Assimilation rates varied with these factors in a way similarto the response of single leaves of other temperate crops, althoughthe absolute values were lower. The optimal temperature forCO2 assimilation was between 5 and 10 °C at 45 W m–2PAR but it increased progressively with increasing light intensityand CO2 concentration up to 27 °C at 450 W m–2 PARand 3100 vpm CO2 as expressed by the equation TOpt = –6.47-h 2.336 In G + 0.031951 where C is CO2 concentration in vpmand I is photo-synthetically active radiation in W m–2.CO2 enrichment also increased stomatal resistance, especiallyat high light intensities. The influence of these results on optimalization of temperaturesand CO2 concentrations for carnation crops subjected to dailylight variation, and the discrepancy between optimal temperaturesfor growth and net photosynthesis, are discussed briefly  相似文献   

8.
The growth rates of four saline-lake diatom taxa were measuredunder varying conditions of salinity (5, 8 and 11), brine type(sulfate- versus bicarbonate-dominated) and nitrogen form (NH4+versus NO3), using a full factorial design. With NO3as the nitrogen source, Cyclotella quillensis, Cymbella pusillaand Anomoeoneis costata exhibited lower growth rates in thesulfate versus bicarbonate media. The strain of Chaetoceroselmorei used in these experiments, isolated from a sulfate-dominatedlake, was unable to grow on NO3 alone. In the NH4+ treatments,neither salinity nor brine type affected the growth rates ofC.quillensis or C.elmorei. When supplied with NH4+, C.pusillaand A.costata had higher growth rates in the bicarbonate versussulfate media, although for C.pusilla the difference on NH4+was not as great as on NO3. The impact of brine typeon NO3 use is consistent with the theory that sulfateinhibits molybdate uptake, as molybdenum is required for NO3use but not NH4+. Cymbella pusilla was the only taxon affectedby changes in salinity. The four taxa used in these experimentsare frequently found in saline lakes and saline-lake sediments,hence they are used in paleoclimate reconstructions; the resultspresented here provide additional information that may enhancethese diatom-based reconstructions.  相似文献   

9.
The goal of this research is to enhance our knowledge of thecontributions of doliolids to the planktonic community as consumersand secondary producers. The objectives are to quantify feedingand growth rates of Dolioletta gegenbauri gonozooids at fourfood concentrations and four temperatures in order to determinetheir impact as grazers throughout the water column. Althoughdoliolids are abundant in numerous regions of the coastal ocean,and are considered to be major planktonic grazers, data on ratesof feeding and growth are scarce. Laboratory experiments wereconducted at 16.5, 20, 23.5 and 26.5°C to quantify removalof a 50:50 volumetric concentration of Thalassiosira weissflogiiand Rhodomonas sp. at four different food concentrations of20, 60, 160 and 390 µg C l–1. Results from theseexperiments suggest that clearance rates are similar at concentrationsfrom 20 to 60 µg C l –1, and decrease as the foodconcentrations increase to 160 and 390 µg C l –1.The ingestion rates increase over a range of phytoplankton concentrationsfrom 20 to 160 µg C l –1, then decrease when abnormallyhigh concentrations of 390 µg C l –1 are offered.Clearance and ingestion rates increase as temperature increasesfrom 16.5 to 26.5°C. The exponential growth rates rangefrom k = 0.2–0.7, with the lowest rates occurring at thehighest food concentration. Growth rates increase with increasingtemperature from K = 0.1–0.3 at 16.5°C to 0.45–0.7at 26.5°C. In each case, the small- and medium-sized zooidshad higher growth rates than the larger gonozooids. These resultssuggest that doliolid feeding and growth rates are a functionof environmental food concentrations and temperatures, and implythat they can be important consumers in a changing neritic environment.  相似文献   

10.
The effect of temperature on post-embryonic growth of Neomysisintermedia was investigated under unlimited food conditionsin the laboratory. The effect of temperature on the size ofnewly released animals was negligibly small, but body size wasinversely related to temperature in adults. This was mainlycaused by the difference in the number of molts before maturation.The specific growth rate of N. intermedia increased exponentiallywith a temperature coefficient, Q10 of 4.6 from 0.018 d–13C to 0.21 d–1 at 20C in juveniles, and with a temperaturecoefficient of 2.7 from 0.006 d–1 at 3C to 0.05 d–1at 25C in adults. The rate in juveniles levelled off above20C, and dropped at 29C. Brood size and brood interval decreasedwith temperature increase, while the daily specific reproductionrate increased. The specific growth rate of gravid females,including production of egg matter, increased exponentiallywith a temperature coefficient of 3.3 from 0.015 d–1 at10C to 0.093 d–1 at 25C. The present laboratory experiments confirmed the temperaturecontrol on the growth of N. intermedia suggested in a hyper-eutrophiclake.  相似文献   

11.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

12.
Growth rates of two freshwater diatoms and three chlorophyteswere compared under 3 h days at 10 µmol m–2 s–1.Specific growth rates ranged between µ=0.03 day–1and µ=0.055 day–1 for the different species andwere in every species independent of temperature between 8 and16°C.  相似文献   

13.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

14.
The variability of cellular toxin content in the dinoflagellateAlexandrium tamarense isolated from Hiroshima Bay was analyzedunder a variety of culture conditions. Growth and toxicity wererepresented as a function of light (80, 90, 110, 160 and 350µmol m–2 s –1), temperature (12, 17 and 22°C),salinity (13, 16.5, 19.5, 25, 29, 33, 36.5 and 38 PSU) and ammoniumconcentration (0.11, 0.22 and 0.44 mM). Toxicity was measuredby the tissue culture bioassay using mouse neuroblastoma cells,and expressed as saxitoxin concentration equivalents. Cellulartoxicity increased with decreasing salinity. At temperaturesof 17 and 22°C, maximum toxin content was observed at thelowest light intensity and growth rate. At the lowest temperatureof 12°C, maximum toxin content was observed at intermediatelight intensities and growth rates. A drastic increase in toxincontent with an increase in ammonium concentration from 0.11to 0.22 mM supported the idea that ammonium utilization fortoxin production directly brings about a high toxin contentinA. tamarense. Our results ecologically imply that the cellsbecome highly toxic in environments with low salinity and highammonium concentration, and successive cloudy days. Such environmentalconditions may lead to increasing risk of shellfish toxification.  相似文献   

15.
We examined the generation time and the house renewal rate ofOikopleura dioica under various conditions. Animals were fedtwo flagellates, Isochrysis galbana and Tetraselmis sp., withconcurrent determination of the carbon contents of body andhouse to estimate house production. The generation time was6 days at 15°C, 4 days at 20°C and 3 days at 25°Cat both 25 and 30 p.s.u. with a food concentration of 4 x 104cells ml–1. The carbon content of newly secreted housesranged from 0.5 to 0.8 µg, corresponding to 15.3 ±4.8% of body carbon. The house renewal rates increased withincreasing temperature and decreasing salinity. Food concentrationsranging from 100 to 16 x 104 cells ml–1, body size andlight condition had no effect on house renewal rate. Cloggingof the inlet filter by adding the large diatom Ditylum sol causedan increase in house renewal rates. The total number and carboncontent of houses during an animal's lifetime ranged from 46to 53 houses and from 6.5 to 10.4 µg, respectively. Sincedaily house production calculated for the O. dioica populationcorresponded to 130–290% of its biomass and daily discardedhouse materials corresponded to 490–1100% of the biomass,this organism must play an important role as a producer of macroscopicaggregates.  相似文献   

16.
The red mangrove (Rhizophora mangle L.) in southern Floridaoccurs frequently in two distinct growth forms, tall and scrubplants, with the scrub form usually found in coastal inlandareas having a higher fluctuation of soil water salinity. Inthe present study, effects of constant and fluctuating salinitieson leaf gas exchange and plant growth of red mangrove seedlingswere investigated under greenhouse conditions. Both constantand fluctuating salinity treatments significantly affected leafgas exchange and plant growth of red mangrove seedlings. Seedlingssubjected to the fluctuating salinity with the mean of both100 and 250 mol m–3 NaCl showed significantly lower photosynthesisand plant growth than those subjected to the corresponding constantsalinity with the same mean. The photosynthetic and growth ratesof the seedlings under these fluctuating treatments were aslow as, or even lower than those expected if they were growingunder the high constant salinity of their respective fluctuationtreatments. Seedlings subjected to the fluctuating salinitywith the mean of 500 mol m–3 NaCl, however, demonstratedslightly higher CO2 assimilation rate and stomatal conductance,but the same plant growth rates as those under the constant500 mol m–3 NaCl treatment. These results suggest that,in general, fluctuating salinity has significant negative effectson photosynthesis and plant growth relative to constant salinitywith the same mean. If this finding can be applicable to fieldsituations, the low photosynthesis and plant growth observedpreviously in several scrub mangrove forests probably can beattributed in part to the salinity fluctuation of soil waterin these mangrove forests. Key words: Fluctuating salinity, photosynthesis, growth, growth forms, mangroves  相似文献   

17.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

18.
The fecundity and somatic growth rates of Calanus agulhensisand Calanoides carinatus, the dominant large calanoid copepodsin the southern Benguela upwelling system, as well as the fecundityof several other common copepods, were measured between Septemberand March of 1993/94 and 1994/95. Mean egg production of mostcopepods was low at >30 eggs female-1 day-1 {Calanoides carinatus23.7, Calanus agulhensis 19.0, Neocalanus tonsus 16.1 and Rhincalanusnasutus 26.1), whereas the mean fecundity of Centropages brachiatuswas significantly greater (83.6 eggs female–1 day-1).This study also presents the first comprehensive field estimatesof the fecundity of Nanno-calanus minor (mean: 26.1 eggs female–1day–1, range: 0.0–96.2 eggs female–1 day–1)and of somatic growth of N6 and all copepodite stages of Calanoidescarinatus (decreasing from 0.58 day–1 for N6 to 0.04 day–1for C5). Somatic growth rates of Calanus agulhensis also declinedwith age: from 0.57 day1 for N6 to 0.09 day1 for C5. Data ongrowth rates were used to assess the relative importance offood [as measured by total chlorophyll (Chi) a concentration],phytoplankton cell size (proportion of cells >10 µm)and temperature to the growth of copepods. Multiple regressionresults suggested that fecundity and somatic growth rates werepositively related to both Chi a concentration and phytoplanktoncell size, but not to temperature. Although it was not possibleto separate the effects of Chi a concentration and phytoplanktoncell size, data from previous laboratory experiments suggestthat copepod growth is not limited by small cells per se, butby the low Chi a concentrations that are associated with theseparticles in the field. Despite growth not being directly relatedto temperature, a dome-shaped relationship was evident in somespecies, with slower growth rates at cool (<13°C) andwarm (>18°C) temperatures. The shape of this relationshipmirrors that of Chi a versus temperature, where poor Chi a concentrationsare associated with cool and warm temperatures. It is concludedthat the effect of food limitation on growth of copepods outweighsthat of temperature in the southern Benguela region. Sourcesof variability in relationships between growth and Chi a concentrationare discussed.  相似文献   

19.
The growth of heterotrophic nanoflagellates (HNF) in mesotrophicLake Constance was measured in situ during a 13 month period.Experiments were conducted with 10 µm pre-filtered lakewater incubated in diffusion chambers at 3 m water depth atthe sampling location for 24 h. Growth rates were calculatedfrom changes in cell numbers occurring during the period ofincubation. Growth rates of all dominant taxa showed pronouncedseasonal variation (–0.13 to 1.76 day–1 and weregenerally highest in summer at high water temperatures. In situgrowth rates were well below maximum growth rates known forthe respective and similar species from laboratory experiments.While water temperature was a key parameter positively relatedto the growth of all HNF species, the effect of various potentialfood items was taxon specific and less clear. Bacterial abundancewas equally important as temperature for growth in the smallbactenvorous Spumella sp., but was insignificant for growthrates of the larger omnivorous Kathablepharis sp. In Spuniellasp., 84% of the observed seasonal variation of its growth ratecould be explained by temperature and bacterial food supply.Based on these results, a multiple linear regression equationwith temperature and bacterial concentration as dependent variableswas calculated for the growth rate of Spumella. Taxon-specificproduction rates were derived from growth rates and averagebiomass of these two species, and compared to total HNF productionestimated from previously measured community growth rates andbiomass in Lake Constance. Production peaks of Spumella sp.and Kathablepharis sp. alternated seasonally. Total HINF productionranged from –0.01 to 10 mg C m–3 day–1. Theaverage seasonal production varied between 1.4 and 33 mg C m–3day–1 over 6 consecutive years. These small protozoa thuscontribute a substantial amount to total zooplankton productionin Lake Constance.  相似文献   

20.
Centropages abdominalis is a neritic, omnivorous, temporallyabundant copepod present throughout the subarctic Pacific andits marginal seas. The two main objectives of this study wereto determine how temperature influences the development of C.abdominalis and whether growth rates of in situ populationsmay be limited by available food. At 6.9°C, median developmenttime from eggs laid to 50% adults was 42 days and the averageweight-specific somatic growth rate was 0.17 day–1. At4.6°C, median development time to adult was 59 days (projected)and growth rate averaged 0.08 day–1, suggesting that 4.6°Cmay be approaching the lower temperature for development andgrowth in this species. The functional relationship betweendevelopment time and temperature was established over the temperaturerange in which this species occurs. The in situ adult growthrates between 10 and 13°C averaged 0.14 day–1 andwere generally lower than the laboratory-reared juvenile growthrates, which may indicate that adult C. abdominalis are foodlimited in the field during summer and autumn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号