首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. One oxidative pathway of LDL involves myeloperoxidase, which catalyzes the production of hypochlorous acid (HOCl) in monocytes. We investigated the apoptotic mechanism induced by oxLDL, generated by HOCl treatment of native LDL, in human monocytic U937 cell line. The involvement of the mitochondrial apoptotic pathway was analyzed in Bcl-2-overexpressing clones, generated from U937 cells. HOCl-oxLDL induced in U937 cells (i) a marked caspase-dependent increase of apoptosis, (ii) a loss of mitochondrial membrane potential, (iii) a specific activation of caspase-2, -3, -8, and -9, and (iv) a similar degree of apoptosis in presence or absence of anti-Fas and anti-TNF-R1 antibodies. Moreover, the degree of HOCl-oxLDL-induced caspase-3 and -8 activation, and apoptosis was significantly reduced in U937/Bcl-2 cells, with no activation of caspase-9. By contrast, Cu-oxLDL-mediated apoptosis in U937 cells involved exclusively the mitochondrial pathway. In conclusion, the mechanism of HOCl-oxLDL-induced apoptosis in monocytic U937 cells involves the two pathways of apical caspase activation: (i) death receptor-mediated caspase-8 and (ii) mitochondria-mediated caspase-9. This converges in the activation of executing caspases, including caspase-3, and apoptosis. The interference of Bcl-2 overexpression with HOCl-oxLDL-induced apoptosis suggests the importance of mitochondrial involvement in this apoptotic mechanism.  相似文献   

2.
Mycoplasma fermentans (M. fermentans) was shown to be involved in the alteration of several eukaryotic cell functions (i.e. cytokine production, gene expression), and was suggested as a causative agent in arthritic diseases involving impaired apoptosis. We investigated whether M. fermentans has a pathogenic potential by affecting tumor necrosis factor (TNF)alpha-induced apoptosis in the human myelomonocytic U937 cell line. A significant reduction in the TNFalpha-induced apoptosis (approximately 60%) was demonstrated upon either infection with live M. fermentans or by stimulation with non-live M. fermentans. To investigate the mechanism of M. fermentans antiapoptotic effect, the reduction of mitochondrial transmembrane potential (DeltaPsim) and the protease activity of caspase-8 were measured. In the infected cells, the reduction of DeltaPsim was inhibited (approximately 75%), and an approximately 60% reduction of caspase-8 activity was measured. In conclusion, M. fermentans significantly inhibits TNFalpha-induced apoptosis in U937 cells, and its effect is upstream of the mitochondria and upstream of caspase-8.  相似文献   

3.
Escherichia coli (E. coli) infections play an important and growing role in the clinic. In the present study, we investigated the involvement of members of the mitogen-activated protein kinase (MAPK) superfamily, including extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK, and caspase-3 and 9 activity in E. coli-induced apoptosis in human U937 cells. We found that E. coli induces apoptosis in U937 cell lines in a dose- and time-dependent manner, p38 MAPK and JNK were activated after 10 min of infection with E. coli. In contrast, ERK1/2 was down-regulated in a time-dependent manner. The levels of total (phosphorylation state-independent) p38 MAPK, JNK and ERK1/2 did not change in E. coli-infected U937 cells at all times examined. Moreover, exposure of U937 cells to E. coli led to caspase-3 and 9 activity. For the evaluation of the role of MAPKs, PD98059, SB203580 and SP600125 were used as MAPKs inhibitors for ERK1/2, p38 MAPK and JNK. Inhibition of ERK1/2 with PD98059 caused further enhancement in apoptosis and caspase-3 and 9 activity, while a selective p38 MAPK inhibitor, SB203580 and JNK inhibitor, SP600125 significantly inhibited E. coli-induced apoptosis and caspase-3 and 9 activity in U937 cells. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked E. coli-induced U937 apoptosis. Taken together, we have shown that E. coli increase p38 MAPK and JNK and decrease ERK1/2 phosphorylation and increase caspase-3 and 9 activity in U937 cells.  相似文献   

4.
Activation of protein kinase C (PKC) by TPA in human U937 myeloid leukemia cells is associated with induction of adherence, differentiation, and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these differentiating cells about 25% of U937 cells accumulated in the subG1 phase after TPA treatment. This effect proved to be phorbol ester-specific, since other compounds such as retinoic acid or vitamin D3 failed to induce apoptosis in conjunction with differentiation. Only a specific inhibitor of PKC, GF109203X, but not the broad-spectrum kinase inhibitor staurosporine or a tyrosine kinase inhibitor genistein could reverse the induction of apoptosis. Bryostatin-1, another specific PKC activator with distinct biochemical activity failed to induce apoptosis. Moreover, bryostatin-1 completely abolished the induction of apoptosis in U937 cells even if added 8 hours after TPA treatment. Apart from apoptosis induced by various chemotherapeutic drugs, TPA-related cell death is not mediated by an autocrine Fas-FasL loop and could not be prevented by a blocking antibody to the Fas receptor. However, a 75% reduction in the number of apoptotic cells after TPA stimulation was achieved by preincubation with a blocking antibody to the TNFalpha receptor. Tetrapeptide cleavage assays revealed a four-fold increase in the DEVD-cleavage activity in U937 cells compared to a three-fold increase in TUR cells. Immunoblotting demonstrated that TUR cells did not activate significant levels of caspase-3 or -7, whereas in U937 cells a 20-kDa cleavage product corresponding to activated caspase-3 was detectable after 3 d TPA exposure. Moreover, immunoblots revealed a strongly reduced expression of the adaptor molecule APAF-1, which is required for cytochrome c-dependent activation of caspase-9 and subsequently caspase-3. APAF-1 proved to be inducible after PKC activation with phorbol ester in U937, but not in TUR cells. Thus, APAF-1 expression may, at least in part, be regulated by PKC activity and reduced APAF-1 levels are associated with resistance to various inducers of apoptosis. Furthermore, TPA exposure of U937 cells is associated with increased levels of the pro-apoptotic proteins Bak and Bcl-xs, whereas simultaneously a decline in the Bcl-2 expression was noticable.  相似文献   

5.
Taxol is used in chemotherapy regimens against breast and ovarian cancer. Treatment of tumor model cell lines with taxol induces apoptosis, but exact mechanism is not sufficiently understood. Our results demonstrate that in response to taxol, various cell types differentially utilize distinct apoptotic pathways. Using MCF7 breast carcinoma cells transfected with caspase-3 gene, we showed that taxol-induced apoptosis occurred in the absence of caspase-3 and caspase-9 activation. Similar results were obtained with ovarian SKOV3 carcinoma cells, expressing high level of endogenous caspase-3. In contrast, staurosporine-induced apoptosis in these cells was accompanied by proteolytic cleavage of pro-caspase-3 and induction of caspase-3 enzymatic activity. The effect of taxol appears to be cell type-specific, since taxol-induced apoptosis in leukemia U937 cells involved caspase-3 activation step. We conclude that a unique caspase-3 and caspase-9 independent pathway is elicited by taxol to induce apoptosis in human ovarian and breast cancinoma cells.  相似文献   

6.
7.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-beta-d-arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1 of the cell cycle and an accumulation of a population in the sub-G1 phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measured in vitro by enhanced metabolization of a fluorescence substrate and in vivo by cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cdelta. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

8.
Withaferin A, a major chemical constituent of Withania somnifera, has been reported for its tumor cell growth inhibitory activity, antitumor effects, and impairing metastasis and angiogenesis. The mechanism by which withaferin A initiates apoptosis remains poorly understood. In the present report, we investigated the effect of withaferin A on the apoptotic pathway in U937 human promonocytic cells. We show that withaferin A induces apoptosis in association with the activation of caspase-3. JNK and Akt signal pathways play crucial roles in withaferin A-induced apoptosis in U937 cells. Furthermore, we have shown that overexpression of Bcl-2 and active Akt (myr-Akt) in U937 cells inhibited the induction of apoptosis, activation of caspase-3, and PLC-γ1 cleavage by withaferin A. Taken together, our results indicated that the JNK and Akt pathways and inhibition of NF-κB activity were key regulators of apoptosis in response to withaferin A in human leukemia U937 cells.  相似文献   

9.
Dolichyl phosphate, an essential carrier lipid in the biosynthesis of N-linked glycoprotein, has been found to induce apoptosis in rat glioma C6 cells and human monoblastic leukemia U937 cells. In the present study, dolichyl phosphate and structurally related compounds were examined regarding their apoptosis-inducing activities in U937 cells. Dihydroheptaprenyl and dihydrodecaprenyl phosphates, of which isoprene units are shorter than that of dolichyl phosphate, induced apoptosis in U937 cells. This phenomenon occurred in a dose- and time-dependent manner, as seen with dolichyl phosphate-induced apoptosis. Derivatives of the same isoprene units of dolichyl phosphate, such as dolichol, dolichal or dolichoic acid, did not induce DNA fragmentation. Farnesyl phosphate and geranylgeranyl phosphate also failed to induce apoptosis. During apoptosis, the caspase family of cysteine proteases play important roles. We observed that apoptosis induced by dihydroprenyl phosphate was mediated by caspase-3-like (CPP32-like) activation but not by caspase-1-like (ICE-like) activation. This caspase-3-like activation was inhibited by a specific inhibitor of caspase-3, DEVD-CHO, but not by an caspase-1 inhibitor YVAD-CHO. We interpret these results to mean that dihydroprenyl phosphates with more than seven isoprene units have apoptosis-inducing activity and that their signal is mediated by caspase-3-like activation.  相似文献   

10.
Ultraviolet light (UV) induced rapid apoptosis of U937 leukemia cells, concurrent with DNA fragmentation and cleavage of poly(ADP-ribose)polymerase (PARP) by activated caspase-3. Thein vitroreconstitution of intact HeLa S3 nuclei and apoptotic U937 cytosolic extract (CE) revealed that (i) Ca2+/Mg2+-dependent, Zn2+-sensitive endonuclease activated in the apoptotic CE induced DNA ladder in HeLa nuclei at pH 6.8–7.4, (ii) activated caspase-3 cleaved PARP in HeLa nuclei, and (iii) when the apoptotic CE was treated with the caspase-3 inhibitor (1 μM Ac-DEVD-CHO) or the caspase-1 inhibitor (10 μM Ac-YVAD-CHO), the former, but not the latter, caused a 50% inhibition of DNA fragmentation and the complete inhibition of PARP cleavage in HeLa nuclei. Similarly, Ac-DEVD-CHO (100 μM) inhibited apoptosis and DNA ladder by 50% and PARP cleavage completely in UV-irradiated U937 cells, but Ac-YVAD-CHO (100 μM) did not. Thus, UV-induced apoptosis of U937 cells involves the Ca2+/Mg2+-dependent endonuclease pathway and the caspase-3–PARP cleavage–Ca2+/Mg2+-dependent endonuclease pathway. The former pathway produced directly 50% of apoptotic DNA ladder, and the latter involved activated caspase-3 and PARP cleavage, followed by formation of the remaining 50% DNA ladder by the activated endonuclease. In UV-irradiated B-cell lines, further, p53-dependent increase of Bax resulted in a greater caspase-3 activation compared to its absence. However, UV-induced activation of JNK1 and p38 was not affected by the caspase-1 and -3 inhibitors in U937 cells, so that caspases-1 and -3 do not function upstream of JNK1 and p38.  相似文献   

11.
目的:研究藏红花素对人胶质瘤U251细胞的促凋亡作用和可能的机制。方法:不同浓度藏红花素处理U251细胞后,MTT法检测细胞活力,TUNEL染色观察细胞凋亡情况。结果:①藏红花素显著抑制U251细胞的增殖,并诱导其发生凋亡。②藏红花素增加了U251细胞胞浆内钙离子的含量,并上调了内质网分子伴侣GRP78的表达。③藏红花素处理后的U251细胞内质网相关凋亡分子CHOP,Caspase-4,JNK活性明显增高。结论:藏红花素通过诱导内质网应激性凋亡抑制人胶质瘤U251细胞的增殖。  相似文献   

12.
Heat shock protein 70 (HSP70) has been shown to act as an inhibitor of apoptosis. We have also observed an inhibitory effect of HSP70 on apoptotic cell death both in preheated U937 and stably transfected HSP70-overexpressing U937 (U937/HSP70) cells. However, the molecular mechanism whereby HSP70 prevents apoptosis still remains to be solved. To address this issue, we investigated the effect of HSP70 on apoptotic processes in an in vitro system. Caspase-3 cleavage and DNA fragmentation were detected in cytosolic fractions from normal cells upon addition of dATP, but not from preheated U937 or U937/hsp70 cells. Moreover, the addition of purified recombinant HSP70 to normal cytosolic fractions prevented caspase-3 cleavage and DNA fragmentation, suggesting that HSP70 prevents apoptosis upstream of caspase-3 processing. Because cytochrome c was still released from mitochondria into the cytosol by lethal heat shock despite prevention of caspase-3 activation and cell death in both preheated U937 and U937/hsp70 cells, it was evident that HSP70 acts downstream of cytochrome c release. Results obtained in vitro with purified deletion mutants of HSP70 showed that the carboxyl one-third region (from amino acids 438 to 641) including the peptide-binding domain and the carboxyl-terminal EEVD sequence was essential to prevent caspase-3 processing. From these results, we conclude that HSP70 acts as a strong suppressor of apoptosis acting downstream of cytochrome c release and upstream of caspase-3 activation.  相似文献   

13.
Exposure of the two related human leukemic cell lines U937 and TUR to chemotherapeutic compounds resulted in opposite effects on induction and resistance to apoptosis. Incubation of U937 cells with 1-β- -arabinofuranosylcytosine or the etoposide VP-16 was accompanied by growth arrest in G0/G1of the cell cycle and an accumulation of a population in the sub-G1phase which exhibited characteristics typical for the apoptotic pathway. In contrast, human TUR leukemia cells demonstrated no significant effects after a similar treatment with Ara-C and VP-16. Thus, TUR cells continued to proliferate in the presence of these anti-cancer drugs and the number of apoptotic cells as evaluated by propidium iodide staining and the detection of internucleosomal DNA fragmentation was significantly reduced when compared to the parental U937 cells. Similar effects were observed upon serum-starvation demonstrating resistance to apoptosis in TUR cells. Whereas induction of apoptosis is regulated by a network of distinct factors including the activation of proteolytically active caspases, we investigated these pathways in both cell lines. U937 cells demonstrated activation of the 32-kDa caspase-3 upon drug treatment by cleavage into the 20-kDa activated form. However, there was no 20-kDa caspase-3 fragment detectable in TUR cells. Simultaneously, the enzymatic activity of caspase-3 was significantly increased in drug-treated U937 cells as measuredin vitroby enhanced metabolization of a fluorescence substrate andin vivoby cleavage of an appropriate substrate for caspase-3, namely, protein kinase Cδ. In contrast, there was little if any caspase-3 activation detectable in drug-treated TUR cells. Taken together, these data suggest a signaling defect in the activation of the caspase-3 proteolytic system in TUR cells upon treatment with chemotherapeutic compounds which is associated with resistance to apoptosis in these human leukemia cells.  相似文献   

14.
羊栖菜多糖通过激活Caspase途径诱导Lovo细胞凋亡   总被引:1,自引:0,他引:1  
研究了羊栖菜多糖(Sargassum Fusiforme Polysaccharides,SFPS)诱导人大肠癌lovo细胞凋亡及凋亡过程中caspase-3、caspase-8、caspase-9的活性变化。MTT法检测SFPS对lovo细胞增殖的抑制率;通过电镜、琼脂糖凝胶电泳、流式细胞术鉴定细胞凋亡;应用Western印迹法测定caspase-3酶原和caspase-9的变化;RToPCR检测caspase-3 mRNA表达;caspase-3,caspase-8、caspase-9活性检测试剂盒观察caspase-3、caspase-8、caspase-9的活性改变。结果显示,SFPS对lovo细胞增殖有显著抑制作用,经形态变化、DNA条带和流式细胞分析,可见明显的细胞凋亡特征。SFPS处理lovo细胞后,发现caspase-3酶原蛋白表达降低,caspase-3 mRNA高表达,并具有剂量和时间的依赖性。而在检测蛋白中,也发现caspase-9被激活进而形成具有活性的片段。另外,caspase的活性检测也进一步发现caspase-3、caspase-9的活性逐步增高。实验结果提示SFPS在体外诱导lovo胞凋亡,这可能是SFPS抑制肿瘤增殖的机制之一,并且是通过激活启动caspase-9,进而激活下游效应caspase-3的级联反应来实现的。  相似文献   

15.
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on monocyte, we infected human U937 cells with the P. aeruginosa strain in vitro. To explore the expression of Bcl-2 and Bax as well as caspase-3/9 activation in the apoptosis of human U937 cells induced by P. aeruginosa, Hoechst 33258 staining and Giemsa staining as well as Flow cytometry analysis were used to determine the rate of apoptosis, and the expressions of Bcl-2 and Bax were assayed by RT-PCR and Western blotting respectively. Bax protein conformation change was assayed by immunoprecipitation. Cytochrome c release was measured by Western blotting. Moreover, exposure of U937 cells to P. aeruginosa measured caspase-3/9 activity. It was found that the apoptosis of human U937 cells could be induced by Pseudomonas aeruginosa in a dose- and time-dependent manner. Also, there were a tendency of alterations with an increased expression level of Bax and a reduced expression level of Bcl-2, increased levels of cytochrome c release, and also with an increased activation of caspase-3/9 and Bax protein conformation change. For the evaluation of the role of caspases, caspase-3/9 inhibitors Z-DEVD-FMK and Z-LEHD-FMK respectively were used. The results were further confirmed by the observation that the caspase inhibitors Z-DEVD-FMK and Z-LEHD-FMK blocked P. aeruginosa-induced U937 apoptosis. It is concluded that P. aeruginosa can induce apoptosis with an up-regulated expression of Bax and a down-regulated expression of Bcl-2, which resulted in increased levels of cytochrome c release and increased caspase-3 and -9 in human U937 cells.  相似文献   

16.
We previously showed that infection of human monocytic U937 cells with nonpathogenic Escherichia coli (E. coli) induced rapid apoptosis in a dose- and time-dependent manner. We also found that E. coli increase p38 mitogen-activated protein Kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK), and decrease extracellular-Regulated Kinase1/2 (ERK1/2) phosphorylation and increase caspase-3 and -9 activity in U937 cells. The current study determines if Bcl-2, Bax, the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor kappa B (NF-κB) regulates E. coli–induced U937 cell apoptosis. Studying the underlying mechanisms we found that the E. coli-induced apoptosis in U937 cells was associated with a more prominent reduction in expression of Bcl-2, levels of P-Akt and NF-κB. Because levels of inhibition of apoptosis protein (cIAP), and X-chromosomelinked inhibitor of apoptosis protein (XIAP) are regulated by NF-κB, E. coli decreased the levels of these proteins in U937 cells through inhibition of NF-κB. Moreover, E. coli markedly elevated Bax expression and cytochrome c redistribution. LY294002, PDTC and Embelin, specific inhibitors of PI3K, NF-κB and XIAP, induced U937 cell apoptosis and the apoptosis is dependent on activity of caspase-3 and -9 in E. coli-treated U937 cells. Through using LY294002 and western blotting, we identified NF-κB was the downstream Akt target regulated by E. coli. Taken together, these results clearly indicate reduced activation of NF-κB via impaired PI3K/Akt activation could result in increased apoptosis of U937 cells infected by E. coli. Moreover, E. coli can induce apoptosis with an increased expression of Bax and a reduced expression of Bcl-2, which resulted in increased levels of cytochrome c release and increase caspase-3 and -9 in U937 cells.  相似文献   

17.
One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. In this study, we investigated the neuroprotective effect of fucoidan on H(2)O(2)-induced apoptosis in PC12 cells and the possible signaling pathways involved. The results showed that fucoidan inhibited the decrease of cell viability, scavenged ROS formation and reduced lactate dehydrogenase release in H(2)O(2)-induced PC12 cells. These changes were associated with an increase in superoxide dismutase and glutathione peroxidase activity, and reduction in malondialdehyde. In addition, fucoidan treatment inhibited apoptosis in H(2)O(2)-induced PC12 cells by increasing the Bcl-2/Bax ratio and decreasing active caspase-3 expression, as well as enhancing Akt phosphorylation (p-Akt). However, the protection of fucoidan on cell survival, p-Akt, the Bcl-2/Bax ratio and caspase-3 activity were abolished by pretreating with phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In consequence, fucoidan might protect the neurocytes against H(2)O(2)-induced apoptosis via reducing ROS levels and activating PI3K/Akt signaling pathway.  相似文献   

18.
The catechins, a family of polyphenols found in tea, can evoke various responses, including apoptosis. In this study we investigated whether the chemical modification of (?)-epigallocatechin gallate (EGCG) could enhance its apoptosis activity.We found that one of the catechin conjugated with capric acid [(2R,3S)-3′,4′,5,7-tetrahydroxyflavan-3-yl decanoate; catechin-C10] was most potent to induce apoptosis in U937 cells. C10 treatment resulted in a significant increase in reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) loss, cytochrome c release caspase-9 and caspase-3 activation. In addition to this C10 also activated extrinsic pathway significantly as evident by time-dependent increase in Fas expression and caspase-8 activity. C10 mediated cleavage of Bid may be an important event for cross talk between intrinsic and extrinsic signaling. Moreover, pre-treatment of cells with anti-oxidant N-acetyl-l-cysteine (NAC) significantly prevented C10-induced apoptosis but did not protect MMP loss. Treatment of cells with pan-caspase inhibitor significantly inhibited apoptosis indicating that caspases are playing key role. In addition to this C10 was found to induce apoptosis in human colon cancer (HCT116) cells while it showed resistance to human keratinocytes (HaCat).In short our results showed that the optimal fatty acid side chain length is required for the apoptosis inducing activity of catechin derivatives in U937 cells.  相似文献   

19.

Background

Agaricus blazei Murrill (ABM) has been shown to exhibit immunostimulatory and anti-cancer activities; however, its mechanism of action is poorly understood. We recently found that the diffusible fraction of hot-water extract of ABM exhibits anti-tumor activity toward leukemic cells, and identified it as agaritine, a hydrazine-containing compound. In the present study, we examined the morphological and cytochemical effects of agaritine on U937 cells to elucidate the tumoricidal mechanism of agaritine.

Methods

Surface expression of phosphatidylserine (evaluated by annexin V binding), Fas antigen, DNA cleavage using TUNEL staining, changes in caspase activities and cytochrome c release, before and after treatment with agaritine, were examined using U937 cells.

Results

Nuclear damage, DNA fragmentation, was observed by Wright–Giemsa, TUNEL staining and agarose gel electrophoresis when U937 cells were incubated with 10 μg/mL of agaritine for 48 h. Flow cytometric analysis indicated that agaritine augments the proportion of annexin V-positive U937 cells without significant change in Fas antigen expression. Activities of caspase-3, -8 and -9 were gradually increased after the addition of agaritine. In the presence of caspase-3 or granzyme B inhibitor, except for the caspase-8 inhibitor, annexin V expression was significantly decreased, suggesting that mainly caspase-3 and -9 participate in the apoptotic pathway. Furthermore, cytochrome c release was detected by western blotting analysis after agaritine treatment.

Conclusions

These results strongly suggest that the ABM constituent agaritine moderately induces apoptosis in U937 leukemic cells via caspase activation through cytochrome c release from mitochondria.

General significance

This is the first report suggesting that the anti-tumor effect of agaritine is mediated through apoptosis. The present results might provide helpful suggestions for the design of anti-tumor drugs toward leukemia patients.  相似文献   

20.
目的探讨线粒体凋亡途径在金黄色葡萄球菌(简称金葡菌)诱导人巨噬细胞系U937细胞凋亡中的作用。方法当细胞:细菌为1∶20时分别培养0 min,15 min,30 min,60 min和90 min,采用Western blot法检测胞质细胞色素C的表达及细胞内Bcl-2、Bax、caspase-9和caspase-3的表达。结果随着金葡菌感染时间的延长,胞质细胞色素C和Bax的表达逐渐增加;Bcl-2蛋白的表达逐渐降低;caspase-9和caspase-3的表达逐渐增加。结论金葡菌可通过抑制Bcl-2表达和促进Bax表达引起线粒体细胞色素C释放入胞质,激活caspase-9和caspase-3,促进U937细胞凋亡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号