首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a model system composed of tandem repeats of Lytechinus variegatus 5 S rDNA (Simpson, R. T., Thoma, F., and Brubaker, J. M. (1985) Cell 42, 799-808) reconstituted into chromatin with chicken erythrocyte core histones to investigate the mechanism of chromatin assembly. Nucleosomes are assembled onto the DNA template by mixing histone octamers and DNA in 2 M NaCl followed by stepwise dialysis into very low ionic strength buffer over a 24-h period. By 1.0 M NaCl, a defined intermediate composed of arrays of H3.H4 tetramers has formed, as shown by analytical and preparative ultracentrifugation. Digestion with methidium propyl EDTA.Fe(II) indicates that these tetramers are spaced at 207 base pair intervals, i.e. one/repeat length of the DNA positioning sequence. In 0.8 M NaCl, some H2A.H2B has become associated with the H3.H4 tetramers and DNA. Surprisingly, under these conditions DNA is protected from methidium propyl EDTA.Fe(II) digestion almost as well as in the complete nucleosome, even though these structures are quite deficient in H2A.H2B. By 0.6 M NaCl, nucleosome assembly is complete, and the MPE digestion pattern is indistinguishable from that observed for oligonucleosomes at very low ionic strength. Below 0.6 M NaCl, the oligonucleosomes are involved in various salt-dependent conformational equilibria: at approximately 0.6 M, a 15% reduction in S20,w that mimics a conformational change observed previously with nucleosome core particles; at and above 0.1 M, folding into a more compact structure(s); at and above 0.1 M NaCl, a reaction involving varying amounts of dissociation of histone octamers from a small fraction of the DNA templates. In low ionic strength buffer (less than 1 mM NaCl), oligonucleosomes are present as fully loaded templates in the extended beads-on-a-string structure.  相似文献   

2.
Imaging of nucleosomal arrays by atomic force microscopy allows a determination of the exact statistical distributions for the numbers of nucleosomes per array and the locations of nucleosomes on the arrays. This precision makes such data an excellent reference for testing models of nucleosome occupation on multisite DNA templates. The approach presented here uses a simple statistical thermodynamic model to calculate theoretical population and positional distributions and compares them to experimental distributions previously determined for 5S rDNA nucleosomal arrays (208-12,172-12). The model considers the possible locations of nucleosomes on the template, and takes as principal parameters an average free energy of interaction between histone octamers and DNA, and an average wrapping length of DNA around the octamers. Analysis of positional statistics shows that it is possible to consider interactions between nucleosomes and positioning effects as perturbations on a random positioning noninteracting model. Analysis of the population statistics is used to determine histone-DNA association constants and to test for differences in the free energies of nucleosome formation with different types of histone octamers, namely acetylated or unacetylated, and different DNA templates, namely 172-12 or 208-12 5S rDNA multisite templates. The results show that the two template DNAs bind histones with similar affinities but histone acetylation weakens the association of histones with both templates. Analysis of locational statistics is used to determine the strength of specific nucleosome positioning tendencies by the DNA templates, and the strength of the interactions between neighboring nucleosomes. The results show only weak positioning tendencies and that unacetylated nucleosomes interact much more strongly with one another than acetylated nucleosomes; in fact acetylation appears to induce a small anticooperative occupation effect between neighboring nucleosomes.  相似文献   

3.
An oligonucleosome 12-mer was reconstituted in the absence of linker histones, onto a DNA template consisting of 12 tandemly arranged 208-base pair fragments of the 5 S rRNA gene from the sea urchin Ly-techinus variegatus (Simpson, R. T., Thoma, F. S., and Burbaker, J. M. (1985) Cell 42, 799-808). The ionic strength-dependent folding of this nucleohistone complex was compared with that of a native oligonucleosome fraction obtained from chicken erythrocyte chromatin, which had been carefully stripped of linker histones and fractionated in sucrose gradients. The DNA of this native fraction exhibited a narrow size distribution centered around the length of the 208-12 DNA template used in the reconstituted complex. These two complexes displayed very similar hydrodynamic behavior as judged by sedimentation velocity analysis. By combining these data with electron microscopy analysis, it was shown that the salt-dependent folding of oligonucleosomes in the absence of linker histones involves the bending of the linker DNA region connecting adjacent nucleosomes. It was also found that selective removal by trypsin of the N-terminal regions ("tails") of the core histones prevents the oligonucleosome chains from folding. Thus, in the absence of these histone domains, the bending of the linker DNA necessary to bring the nucleosomes in contact is completely abolished. In addition to the complete lack of folding, removal of the histone tails results in an unwinding at low salt of a 20-base pair region at each flanking side of the nucleosome core particle. The possible functional relevance of these results is discussed.  相似文献   

4.
5.
The method of velocity sedimentation have been used to investigate ionic-strength-induced compaction of sea urchin sperm chromatin characterized by extremely long linker DNA (100 b.p.). The dependence of sedimentation coefficients of oligonucleosomes on the number of nucleosomes in the chain have been studied in the range of ionic strength from 0.005 to 0.085. Analysis of these data indicates that such structural parameters of sea urchin sperm chromatin fibre as the diameter of the chain and the length of the chain per nucleosome are quite similar to those of chromatin with shorter linker DNA, but the DNA packing ratio is higher. The structure of sea urchin sperm oligonucleosomes agrees well with the model of three-dimensional zig-zag-shaped chain with linker DNA forming a loop. The possible role of alpha-helical regions of the C-terminal domain of sea urchin sperm histone H1 in the long linker DNA folding is discussed.  相似文献   

6.
We addressed the question of how nuclear histones and DNA interact and form a nucleosome structure by applying atomic force microscopy to an in vitro reconstituted chromatin system. The molecular images obtained by atomic force microscopy demonstrated that oligonucleosomes reconstituted with purified core histones and DNA yielded a 'beads on a string' structure with each nucleosome trapping 158 +/- 27 bp DNA. When dinucleosomes were assembled on a DNA fragment containing two tandem repeats of the positioning sequence of the Xenopus 5S RNA gene, two nucleosomes were located around each positioning sequence. The spacing of the nucleosomes fluctuated in the absence of salt and the nucleosomes were stabilized around the range of the positioning signals in the presence of 50 mM NaCl. An addition of histone H1 to the system resulted in a tight compaction of the dinucleosomal structure.  相似文献   

7.
8.
Long chromatin containing linker histones H1 or H5 was assembled on tandemly repeated 172 or 207 base-pair nucleosome positioning sequences from a sea urchin 5 S RNA gene. The effects of H1 and H5 on spacing and positioning of nucleosomes were assessed. In the absence of linker histones, precise determinations of core particle boundaries showed that, although a large proportion of the histone octamers occupy a unique position, there is a small group of other, less populated sites located around this major site. The dominant position was found 10 to 15 base-pairs upstream from the unique position previously reported for the histone octamer on the monomer 260 base-pair sequence. Linker histones do not override the underlying DNA signals that induce the very regular spacing of nucleosomes in chromatins assembled on these strongly positioning multimer DNA sequences. They were nevertheless found to be decisive in determining the chromatosome positions and their distributions, and as such define the chromatosome as a positioning entity.  相似文献   

9.
10.
The molecular basis underlying the sequence-specific positioning of nucleosomes on DNA was investigated. We previously showed that histone octamers occupy multiple specific positions on mouse satellite DNA in vivo and have now reconstituted the 234 bp mouse satellite repeat unit with pure core histones into mononucleosomes. Histones from mouse liver or chicken erythrocytes bind to the DNA in multiple precisely defined frames in perfect phase with a diverged 9 bp subrepeat of the satellite DNA. This is the first time that nucleosome positions on a DNA in vivo have been compared to those found on the same DNA by in vitro reconstitution. Most of the nucleosomes occupy identical positions in vivo and in vitro. There are, however, some characteristic differences. We conclude that sequence-dependent histone-DNA interactions play a decisive role in the positioning of nucleosomes in vivo, but that the nucleosome locations in native chromatin are subject to additional constraints.  相似文献   

11.
Structural features of a regulatory nucleosome   总被引:9,自引:0,他引:9  
DNA sequences from the long terminal repeat of the mouse mammary tumor virus (MMTV-LTR) position nucleosomes both in vivo and in vitro. Here, were present chromatin reconstitution experiments showing that MMTV-LTR sequences from -236 to +204 accommodate two histone octamers in positions compatible with the in vivo data. This positioning is not influenced by the length of the DNA fragment and occurs in linear as well as in closed circular DNA molecules. MMTV-LTR DNA sequences show an intrinsic bendability that closely resembles its wrapping around the histone octamer. We propose that bendability is responsible for the observed rotational nucleosome positioning. Translational nucleosome positioning seems also to be determined by the DNA sequence. These data, along with the results from reconstitution experiments with insertion mutants, support a modular model of nucleosome phasing on MMTV-LTR, where the actual positioning of the histone octamer results from the additive effect of multiple features of the DNA sequence.  相似文献   

12.
Using small-angle neutron scattering (SANS), we have measured the salt-dependent static structure factor of di- and trinucleosomes from chicken erythrocytes and from COS-7 cells. We also determined the sedimentation coefficients of these dinucleosomes and dinucleosomes reconstituted on a 416-bp DNA containing two nucleosome positioning sequences of the 5S rDNA of Lytechinus variegatus at low and high salt concentrations. The internucleosomal distance d was calculated by simulation as well as Fourier back-transformation of the SANS curves and by hydrodynamic simulation of sedimentation coefficients. Nucleosome dimers from chicken erythrocyte chromatin show a decrease in d from approximately 220 A at 5 mM NaCl to 150 A at 100 mM NaCl. For dinucleosomes from COS-7 chromatin, d decreases from 180 A at 5 mM to 140 A at 100 mM NaCl concentration. Our measurements on trinucleosomes are compatible with a compaction through two different mechanisms, depending on the salt concentration. Between 0 and 20 mM NaCl, the internucleosomal distance between adjacent nucleosomes remains constant, whereas the angle of the DNA strands entering and leaving the central nucleosome decreases. Above 20 mM NaCl, the adjacent nucleosomes approach each other, similar to the compaction of dinucleosomes. The internucleosomal distance of 140-150 A at 100 mM NaCl is in agreement with distances measured by scanning force microscopy and electron microscopy on long chromatin filaments.  相似文献   

13.
Concatameric sea urchin 5S rDNA templates reconstituted with histones provide very popular chromatin models for many kinds of in vitro studies. We have used AFM to characterize the locational aspects of nucleosome occupation on one such array, the 208-12, by determining the internucleosomal- and end-distance distributions for arrays reconstituted to various subsaturating levels with nonacetylated or hyperacetylated HeLa histones. A simulation analysis of the experimental distributions confirms the qualitative conclusions and provides quantitative parameter values for the identified features. For nonacetylated arrays, the end-distance data demonstrate the nucleosome positioning ability of the 5S sequence and detect an enhanced preference for nucleosomes to bind at DNA termini. The internucleosomal-distance data provide clear evidence for cooperativity in nucleosome location on these templates, detectable even at subsaturated loading levels. Hyperacetylated arrays show no change in the preference of nucleosomes to bind at termini and a slight change in nucleosome positioning behavior but, most strikingly, little or no evidence for cooperativity in nucleosome location. Thus, acetylation of the N-terminal histone tails abolishes the cooperativity.  相似文献   

14.
Electrophoretic mobility, amino acid composition and salt dissociation of histones isolated from sperm of sea urchin Strongylocentrotus intermedius and calf thymus cells were studied. The special arginine-rich histone fraction (I) has been observed in sea urchin sperm chromatin, this fraction being absent in calf thymus chromatin. Dissociation of lysine-containing histone fractions from sea urchin chromatin occured in the range of 0.7 to 1.0 M NaCl concentrations. H1 of calf thymus chromatin was totally extracted with 0.6 M NaCl. In the course of a further increase of salt concentrations (up to 1.5 M NaCl) a practically total extraction of histones from sperm chromatin was observed, while about 20% of proteins remained bound to DNA in thymus chromatin after extraction with 2.0 M NaCl. The template activity of non-extracted DNP preparations from urchin sperm was equal to 2-3% of that of totally deproteinized DNA. The template activity of DNP gradually increased at protein extraction from DNP preparations. The hybridization capacity of RNA transcribed on partially dehistonized DNP templates in vitro also increased.  相似文献   

15.
Mobility of positioned nucleosomes on 5 S rDNA   总被引:13,自引:0,他引:13  
  相似文献   

16.
17.
18.
Transcription of nucleosomes from human chromatin.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

19.
20.
Unique translational positioning of nucleosomes on synthetic DNAs.   总被引:2,自引:0,他引:2       下载免费PDF全文
A computational study was previously carried out to analyze DNA sequences that are known to position histone octamers at single translational sites. A conserved pattern of intrinsic DNA curvature was uncovered that was proposed to direct the formation of nucleosomes to unique positions. The pattern consists of two regions of curved DNA separated by preferred lengths of non-curved DNA. In the present study, 11 synthetic DNAs were constructed which contain two regions of curved DNA of the form [(A5.T5)(G/C)5]4 separated by non-curved regions of variable length. Translational mapping experiments of in vitro reconstituted mononucleosomes using exonuclease III, micrococcal nuclease and restriction enzymes demonstrated that two of the fragments positioned nucleosomes at a single site while the remaining fragments positioned octamers at multiple sites spaced at 10 base intervals. The synthetic molecules that positioned nucleosomes at a single site contain non-curved central regions of the same lengths that were seen in natural nucleosome positioning sequences. Hydroxyl radical and DNase I digests of the synthetic DNAs in reconstituted nucleosomes showed that the synthetic curved element on one side of the nucleosomal dyad assumed a rotational orientation where narrow minor grooves of the A-tracts faced the histone surface with all molecules. In contrast, the curved element on the other side of the nucleosome displayed variable rotational orientations between molecules which appeared to be related to the positioning effect. These results suggest that asymmetry between the two halves of nucleosomal DNA may facilitate translational positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号