首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although many sources of three-dimensional information have been isolated and demonstrated to contribute independently, to depth vision in animal studies, it is not clear whether these distinct cues are perceived to be perceptually equivalent. Such ability is observed in humans and would seem to be advantageous for animals as well in coping with the often co-varying (or ambiguous) information about the layout of physical space. We introduce the expression primary-depth-cue equivalence to refer to the ability to perceive mutually consistent information about differences in depth from either stereopsis or motion-parallax. We found that owls trained to detect relative depth as a perceptual category (objects versus holes) when specified by binocular disparity alone (stereopsis), immediately transferred this discrimination to novel stimuli where the equivalent depth categories were available only through differences in motion information produced by head movements (observer-produced motion-parallax). Motion-parallax discrimination did occur under monocular viewing conditions and reliable performance depended heavily on the amplitude of side-to-side head movements. The presence of primary-depth-cue equivalence in the visual system of the owl provides further conformation of the hypothesis that neural systems evolved to detect differences in either disparity or motion information are likely to share similar processing mechanisms.  相似文献   

2.
The focus of this review is the experimental techniques used to identify forms of social learning shown by humans and nonhuman animals. Specifically, the ‘ghost display’ and ‘end‐state’ conditions, which have been used to tease apart imitative and emulative learning are evaluated. In a ghost display, the movements of an apparatus are demonstrated, often through the discrete use of fishing‐line or hidden mechanisms, without a live model acting directly upon the apparatus so that the apparatus appears to be operated as if by a ‘ghostly’ agent. In an end‐state condition, an observing individual is shown the initial state of the test apparatus, the apparatus is then manipulated out‐of‐sight and then represented to the individual in its final state. The aim of the ghost display condition is to determine whether individuals are able to emulate by replicating the movements of an apparatus, or perform a task, without requiring information about the bodily movements required to do so (imitation). The end‐state condition is used to identify goal‐emulation by assessing whether the observer can replicate the steps required to solve the task without having been shown the required body actions or task movements. The responses of individuals tested with either the ghost display and/or end‐state conditions are compared to those of further individuals who have observed a full demonstration by either a human experimenter or a conspecific. The responses of a control group, to whom no information has been provided about the test apparatus or required actions, are also compared and evaluated. The efficacy of these experimental techniques employed with humans, nonhuman primates, dogs, rats and birds are discussed and evaluated. The experiments reviewed herein emphasise the need to provide ghost displays and end‐state conditions in combination, along with full live demonstrations and a no‐information control. Future research directions are proposed.  相似文献   

3.
People sometimes fail to notice salient unexpected objects when their attention is otherwise occupied, a phenomenon known as inattentional blindness. To explore individual differences in inattentional blindness, we employed both static and dynamic tasks that either presented the unexpected object away from the focus of attention (spatial) or near the focus of attention (central). We hypothesized that noticing in central tasks might be driven by the availability of cognitive resources like working memory, and that noticing in spatial tasks might be driven by the limits on spatial attention like attention breadth. However, none of the cognitive measures predicted noticing in the dynamic central task or in either the static or dynamic spatial task. Only in the central static task did working memory capacity predict noticing, and that relationship was fairly weak. Furthermore, whether or not participants noticed an unexpected object in a static task was only weakly associated with their odds of noticing an unexpected object in a dynamic task. Taken together, our results are largely consistent with the notion that noticing unexpected objects is driven more by stochastic processes common to all people than by stable individual differences in cognitive abilities.  相似文献   

4.
The primate brain intelligently processes visual information from the world as the eyes move constantly. The brain must take into account visual motion induced by eye movements, so that visual information about the outside world can be recovered. Certain neurons in the dorsal part of monkey medial superior temporal area (MSTd) play an important role in integrating information about eye movements and visual motion. When a monkey tracks a moving target with its eyes, these neurons respond to visual motion as well as to smooth pursuit eye movements. Furthermore, the responses of some MSTd neurons to the motion of objects in the world are very similar during pursuit and during fixation, even though the visual information on the retina is altered by the pursuit eye movement. We call these neurons compensatory pursuit neurons. In this study we develop a computational model of MSTd compensatory pursuit neurons based on physiological data from single unit studies. Our model MSTd neurons can simulate the velocity tuning of monkey MSTd neurons. The model MSTd neurons also show the pursuit compensation property. We find that pursuit compensation can be achieved by divisive interaction between signals coding eye movements and signals coding visual motion. The model generates two implications that can be tested in future experiments: (1) compensatory pursuit neurons in MSTd should have the same direction preference for pursuit and retinal visual motion; (2) there should be non-compensatory pursuit neurons that show opposite preferred directions of pursuit and retinal visual motion.  相似文献   

5.
Pinnipeds, that is true seals (Phocidae), eared seals (Otariidae), and walruses (Odobenidae), possess highly developed vibrissal systems for mechanoreception. They can use their vibrissae to detect and discriminate objects by direct touch. At least in Phocidae and Otariidae, the vibrissae can also be used to detect and analyse water movements. Here, we review what is known about this ability, known as hydrodynamic perception, in pinnipeds. Hydrodynamic perception in pinnipeds developed convergently to the hydrodynamic perception with the lateral line system in fish and the sensory hairs in crustaceans. So far two species of pinnipeds, the harbour seal (Phoca vitulina) representing the Phocidae and the California sea lion (Zalophus californianus) representing the Otariidae, have been studied for their ability to detect local water movements (dipole stimuli) and to follow hydrodynamic trails, that is the water movements left behind by objects that have passed by at an earlier point in time. Both species are highly sensitive to dipole stimuli and can follow hydrodynamic trails accurately. In the individuals tested, California sea lions were clearly more sensitive to dipole stimuli than harbour seals, and harbour seals showed a superior trail following ability as compared to California sea lions. Harbour seals have also been shown to derive additional information from hydrodynamic trails, such as motion direction, size and shape of the object that caused the trail (California sea lions have not yet been tested). The peculiar undulated shape of the harbour seals’ vibrissae appears to play a crucial role in trail following, as it suppresses self-generated noise while the animal is swimming.  相似文献   

6.
Adult humans possess a sophisticated repertoire of mathematical faculties. Many of these capacities are rooted in symbolic language and are therefore unlikely to be shared with nonhuman animals. However, a subset of these skills is shared with other animals, and this set is considered a cognitive vestige of our common evolutionary history. Current evidence indicates that humans and nonhuman animals share a core set of abilities for representing and comparing approximate numerosities nonverbally; however, it remains unclear whether nonhuman animals can perform approximate mental arithmetic. Here we show that monkeys can mentally add the numerical values of two sets of objects and choose a visual array that roughly corresponds to the arithmetic sum of these two sets. Furthermore, monkeys' performance during these calculations adheres to the same pattern as humans tested on the same nonverbal addition task. Our data demonstrate that nonverbal arithmetic is not unique to humans but is instead part of an evolutionarily primitive system for mathematical thinking shared by monkeys.  相似文献   

7.
Basic math in monkeys and college students   总被引:1,自引:1,他引:0  
Adult humans possess a sophisticated repertoire of mathematical faculties. Many of these capacities are rooted in symbolic language and are therefore unlikely to be shared with nonhuman animals. However, a subset of these skills is shared with other animals, and this set is considered a cognitive vestige of our common evolutionary history. Current evidence indicates that humans and nonhuman animals share a core set of abilities for representing and comparing approximate numerosities nonverbally; however, it remains unclear whether nonhuman animals can perform approximate mental arithmetic. Here we show that monkeys can mentally add the numerical values of two sets of objects and choose a visual array that roughly corresponds to the arithmetic sum of these two sets. Furthermore, monkeys' performance during these calculations adheres to the same pattern as humans tested on the same nonverbal addition task. Our data demonstrate that nonverbal arithmetic is not unique to humans but is instead part of an evolutionarily primitive system for mathematical thinking shared by monkeys.  相似文献   

8.
The invention in 1986 of scanning force microscopy (SFM) provided a new and powerful tool for the investigation of biological structures. SFM yields a three-dimensional view at nanometer resolution of the surface topography associated with biological objects. The potential for imaging either macromolecules or biomolecules and cells under native (physiological) conditions is currently being exploited to obtain functional information at the molecular level. In addition, the forces involved in individual bimolecular interactions are being assessed under static and dynamic conditions. In this report we focus on the imaging capability of the SFM. The rather broad spectrum of applications represented is intended to orient the prospective user of biological SFM.  相似文献   

9.
The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding.  相似文献   

10.
Behaving in the real world requires flexibly combining and maintaining information about both continuous and discrete variables. In the visual domain, several lines of evidence show that neurons in some cortical networks can simultaneously represent information about the position and identity of objects, and maintain this combined representation when the object is no longer present. The underlying network mechanism for this combined representation is, however, unknown. In this paper, we approach this issue through a theoretical analysis of recurrent networks. We present a model of a cortical network that can retrieve information about the identity of objects from incomplete transient cues, while simultaneously representing their spatial position. Our results show that two factors are important in making this possible: A) a metric organisation of the recurrent connections, and B) a spatially localised change in the linear gain of neurons. Metric connectivity enables a localised retrieval of information about object identity, while gain modulation ensures localisation in the correct position. Importantly, we find that the amount of information that the network can retrieve and retain about identity is strongly affected by the amount of information it maintains about position. This balance can be controlled by global signals that change the neuronal gain. These results show that anatomical and physiological properties, which have long been known to characterise cortical networks, naturally endow them with the ability to maintain a conjunctive representation of the identity and location of objects.  相似文献   

11.
Different primate species have developed extensive capacities for grasping and manipulating objects. However, the manual abilities of primates remain poorly known from a dynamic point of view. The aim of the present study was to quantify the functional and behavioral strategies used by captive bonobos (Pan paniscus) during tool use tasks. The study was conducted on eight captive bonobos which we observed during two tool use tasks: food extraction from a large piece of wood and food recovery from a maze. We focused on grasping postures, in‐hand movements, the sequences of grasp postures used that have not been studied in bonobos, and the kind of tools selected. Bonobos used a great variety of grasping postures during both tool use tasks. They were capable of in‐hand movement, demonstrated complex sequences of contacts, and showed more dynamic manipulation during the maze task than during the extraction task. They arrived on the location of the task with the tool already modified and used different kinds of tools according to the task. We also observed individual manual strategies. Bonobos were thus able to develop in‐hand movements similar to humans and chimpanzees, demonstrated dynamic manipulation, and they responded to task constraints by selecting and modifying tools appropriately, usually before they started the tasks. These results show the necessity to quantify object manipulation in different species to better understand their real manual specificities, which is essential to reconstruct the evolution of primate manual abilities.  相似文献   

12.
The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level.  相似文献   

13.
Delays in the transmission of sensory and motor information prevent errors from being instantaneously available to the central nervous system (CNS) and can reduce the stability of a closed-loop control strategy. On the other hand, the use of a pure feedforward control (inverse dynamics) requires a perfect knowledge of the dynamic behavior of the body and of manipulated objects. Sensory feedback is essential both to accommodate unexpected errors and events and to compensate for uncertainties about the dynamics of the body. Experimental observations concerning the control of posture, gaze and limbs have shown that the CNS certainly uses a combination of closed-loop and open-loop control. Feedforward components of movement, such as eye saccades, occur intermittently and present a stereotyped kinematic profile. In visuo-manual tracking tasks, hand movements exhibit velocity peaks that occur intermittently. When a delay or a slow dynamics are inserted in the visuo-manual control loop, intermittent step-and-hold movements appear clearly in the hand trajectory. In this study, we investigated strategies used by human subjects involved in the control of a particular dynamic system. We found strong evidence for substantial nonlinearities in the commands produced. The presence of step-and-hold movements seemed to be the major source of nonlinearities in the control loop. Furthermore, the stereotyped ballistic-like kinematics of these rapid and corrective movements suggests that they were produced in an open-loop way by the CNS. We analyzed the generation of ballistic movements in the light of sliding control theory assuming that they occurred when a sliding variable exceeded a constant threshold. In this framework, a sliding variable is defined as a composite variable (a combination of the instantaneous tracking error and its temporal derivatives) that fulfills a specific stability criterion. Based on this hypothesis and on the assumption of a constant reaction time, the tracking error and its derivatives should be correlated at a particular time lag before movement onset. A peak of correlation was found for a physiologically plausible reaction time, corresponding to a stable composite variable. The direction and amplitude of the ongoing stereotyped movements seemed also be adjusted in order to minimize this variable. These findings suggest that, during visually guided movements, human subjects attempt to minimize such a composite variable and not the instantaneous error. This minimization seems to be obtained by the execution of stereotyped corrective movements. Received: 18 February 1997 / Accepted in revised form: 29 July 1997  相似文献   

14.
The scatter hoarding of food, or caching, is a widespread and well-studied behaviour. Recent experiments with caching corvids have provided evidence for episodic-like memory, future planning and possibly mental attribution, all cognitive abilities that were thought to be unique to humans. In addition to the complexity of making flexible, informed decisions about caching and recovering, this behaviour is underpinned by a motivationally controlled compulsion to cache. In this review, we shall first discuss the compulsive side of caching both during ontogeny and in the caching behaviour of adult corvids. We then consider some of the problems that these birds face and review the evidence for the cognitive abilities they use to solve them. Thus, the emergence of episodic-like memory is viewed as a solution for coping with food perishability, while the various cache-protection and pilfering strategies may be sophisticated tools to deprive competitors of information, either by reducing the quality of information they can gather, or invalidating the information they already have. Finally, we shall examine whether such future-oriented behaviour involves future planning and ask why this and other cognitive abilities might have evolved in corvids.  相似文献   

15.
In a dynamic world, an accurate model of the environment is vital for survival, and agents ought regularly to seek out new information with which to update their world models. This aspect of behaviour is not captured well by classical theories of decision making, and the cognitive mechanisms of information seeking are poorly understood. In particular, it is not known whether information is valued only for its instrumental use, or whether humans also assign it a non-instrumental intrinsic value. To address this question, the present study assessed preference for non-instrumental information among 80 healthy participants in two experiments. Participants performed a novel information preference task in which they could choose to pay a monetary cost to receive advance information about the outcome of a monetary lottery. Importantly, acquiring information did not alter lottery outcome probabilities. We found that participants were willing to incur considerable monetary costs to acquire payoff-irrelevant information about the lottery outcome. This behaviour was well explained by a computational cognitive model in which information preference resulted from aversion to temporally prolonged uncertainty. These results strongly suggest that humans assign an intrinsic value to information in a manner inconsistent with normative accounts of decision making under uncertainty. This intrinsic value may be associated with adaptive behaviour in real-world environments by producing a bias towards exploratory and information-seeking behaviour.  相似文献   

16.
This study investigates the morphological basis of differences between humans and chimpanzees in the kinematical and dynamical parameters of the musculature of the thumb. It is partly intended to test an hypothesis that human thumb muscles can exert significantly greater torques, due to larger muscle cross-sectional areas or to longer tendon moment arms or to both. We focus on the estimation of the potentials of thumb muscles to exert torques about joint axes in a sample of eight chimpanzee cadaver hands. The potential torque of a muscle is estimated by taking the product of a muscle's physiological cross-sectional area (an estimator of force) with its dynamical moment arm (derived from the slope of tendon excursion versus joint angular displacement, obtained during passive movements of cadaver thumb joints). Comparison of our results with similar data obtained for humans at the same Mayo Clinic laboratory shows significant differences between humans and chimpanzees in potential torque of most thumb muscles, those of humans generally exhibiting larger values. The primary reason for the larger torques in humans is that their average moment arms are significantly longer, permitting greater torque for a given muscle size. An additional finding is that chimpanzees and humans differ in the direction of secondary thumb metacarpal movements elicited by contraction of some muscles, as shown by differences in moment arm signs for a given movement in the same muscle. The differences appear to be related to differences in the musculo-skeletal structures of the trapeziometacarpal joint.  相似文献   

17.
Recent evidence suggests that the visual control of prehension may be less dependent on binocular information than has previously been thought. Studies investigating this question, however, have generally only examined reaches to single objects presented in isolation, even though natural prehensile movements are typically directed at objects in cluttered scenes which contain many objects. The present study was designed, therefore, to assess the contribution of binocular information to the control of prehensile movements in multiple-object scenes. Subjects reached for and grasped objects presented either in isolation or in the presence of one, two or four additional 'flanking' objects, under binocular and monocular viewing conditions. So that the role of binocular information could be clearly determined, subjects made reaches both in the absence of a visible scene around the target objects (self-illuminated objects presented in the dark) and under normal ambient lighting conditions. Analysis of kinematic parameters indicated that the removal of binocular information did not significantly affect many of the major indices of the transport component, including peak wrist velocity. However, peak grip apertures increased and subjects spent more time in the final slow phase of movement, prior to grasping the object, during monocularly guided reaches. The dissociation between effects of binocular versus monocular viewing on transport and grasp parameters was observed irrespective of the presence of flanking objects. These results therefore further question the view that binocular vision is pre-eminent in the control of natural prehensile movements.  相似文献   

18.
Two bottlenosed dolphins taught to classify pairs of three-dimensional objects as either same or different were tested with novel stimulus sets to determine how well their classification abilities would generalize. Both dolphins were immediately able to classify novel pairs of planar objects, differing only in shape, as same or different. When tested on sets of three objects consisting of either all different objects or of two identical objects and one different object, both dolphins proved to be able to classify 'all different' sets as different and 'not all different' sets as same, at levels significantly above chance. These data suggest that dolphins can use knowledge about similarity-based classification strategies gained from previous training to perform successfully in a variety of novel same-different classification tasks. Visual classificatory abilities of dolphins appear to be comparable to those that have been demonstrated in primates.  相似文献   

19.
Here we report findings from neuropsychological investigations showing the existence, in humans, of intersensory integrative systems representing space through the multisensory coding of visual and tactile events. In addition, these findings show that visuo-tactile integration may take place in a privileged manner within a limited sector of space closely surrounding the body surface, i.e., the near-peripersonal space. They also demonstrate that the representation of near-peripersonal space is not static, as objects in the out-of-reach space can be processed as nearer, depending upon the (illusory) visual information about hand position in space, and the use of tools as physical extensions of the reachable space. Finally, new evidence is provided suggesting the multisensory coding of peripersonal space can be achieved through bottom-up processing that, at least in some instances, is not necessarily modulated by more "cognitive" top-down processing, such as the expectation regarding the possibility of being touched. These findings are entirely consistent with the functional properties of multisensory neuronal structures coding near-peripersonal space in monkeys, as well as with behavioral, and neuroimaging evidence for the cross-modal coding of space in normal subjects. This high level of convergence ultimately favors the idea that multisensory space coding is achieved through similar multimodal structures in both humans and non-human primates.  相似文献   

20.
Melcher D  Piazza M 《PloS one》2011,6(12):e29296
Many common tasks require us to individuate in parallel two or more objects out of a complex scene. Although the mechanisms underlying our abilities to count the number of items, remember the visual properties of objects and to make saccadic eye movements towards targets have been studied separately, each of these tasks require selection of individual objects and shows a capacity limit. Here we show that a common factor--salience--determines the capacity limit in the various tasks. We manipulated bottom-up salience (visual contrast) and top-down salience (task relevance) in enumeration and visual memory tasks. As one item became increasingly salient, the subitizing range was reduced and memory performance for all other less-salient items was decreased. Overall, the pattern of results suggests that our abilities to enumerate and remember small groups of stimuli are grounded in an attentional priority or salience map which represents the location of important items.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号