首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation.  相似文献   

2.
Protein fouling is a critical problem for ultrafiltration. In this study, we adopted bovine serum albumin (BSA) as a model protein and polysulfone membrane as a typical ultrafiltration membrane. We then investigated the factors of the protein denaturation and aggregation, such as stirring shear stress and intermolecular exchange of disulfide during ultrafiltration, and discussed the BSA fouling mechanism. Fourier transform-infrared analysis revealed that magnetic stirring did not cause any difference in the secondary structural change of BSA gel-like deposits on the ultrafiltration membrane. BSA aggregates were collected from BSA gel-like deposits on the ultrafiltration membrane by centrifugation. Polyacrylamide gel electrophoresis in SDS analysis of BSA aggregates proved that the major binding of the BSA aggregates involved intermolecular disulfhydryl binding and that capping the free thiol group in BSA molecules with cysteine induced a remarkable decrease in the amount of the BSA aggregates during ultrafiltration. We concluded that one of the main factors in the BSA aggregation during ultrafiltration is the intermolecular exchange of disulfide through cysteinyl residue. We also found that the BSA aggregation caused a decrease in alpha-helix from 66% to 50% and an increase in beta-sheet from 20% to 36%, which was presumably because the cysteine residues associated with the intermolecular disulfide bonds had been located in alpha-helices. Copyright John Wiley & Sons, Inc.  相似文献   

3.
Protein cold-gelation has recently received particular attention for its relevance in bio and food technology. In this work, we report a study on bovine serum albumin cold-gelation induced by copper or zinc ions. Metal-induced cold-gelation of proteins requires two steps: during the first one, the heat treatment causes protein partial unfolding and aggregation; then, after cooling the solution to room temperature, gels are formed upon the addition of metal ions. The thermally induced behaviour has been mainly investigated through different techniques: Fourier transform infrared (FTIR) spectroscopy, circular dichroism, dynamic light scattering (DLS) and rheology. Data have shown that the aggregation process is mainly due to protein conformational changes—α-helices into β-aggregates—forming small aggregated structures with a mean diameter of about 20 nm a few minutes after heating. After metal ion addition, the viscoelastic properties of the gels have been investigated by rheological measurements. The behaviour of the elastic and viscous moduli as a function of time is discussed in terms of ion concentration and type. Our results show that: (1) the elastic behaviour depends on ion concentration and (2) at a given ion concentration, gels obtained in the presence of zinc exhibit an elastic value larger than that observed in the Cu2+ case. Data suggest that cold-gelation is the result of different mechanisms: the ion-mediated protein–protein interaction and the bridging effect due to the presence of divalent ions in solution.  相似文献   

4.
Protein aggregation has been recognized to be a pathological indicator for several fatal diseases, such as Alzheimer's disease, transmissible spongiform encephalopathies, Creutzfeldt-Jacob disease, etc. Aggregation usually involves conformational changes of proteins that have acquired an intermediate beta-structure-rich conformation and can occur even at low protein concentration. Recent work in our laboratory has shown that bovine serum albumin (BSA), even at low-concentration, exhibits self-association properties related to conformational changes, so providing a very convenient model system to study this class of problems. Here we report data (obtained by different experimental techniques) on a mixture of BSA in native and intermediate (beta-structure-rich) form. Results show that the interaction between the two species is responsible for a decrease in the thermodynamic stability of the solution. This occurs without requiring noticeable conformational changes of the native protein. Results presented here can provide new insight on the "protein only" hypothesis proposed for the formation of plaques involved in several neurodegenerative diseases.  相似文献   

5.
During our experimental work, aggregation of bovine serum albumin was obtained incubating the protein solution at 60 °C to investigate temperature-induced secondary structure, conformation changes and anti-aggregative activity of trehalose. IR-measurements suggested that in the presence of 1.0 M of trehalose there is a little increase in short segment connecting ?α-helical and a clearly decrease in the loss of ?α-helix structure and in the formation of intermolecular and antiparellel β-sheet up to 78 and 55%, respectively. Useful information also arose following the temperature evolution of Amide I′ band profile in the range of temperature between 25 and 90 °C in absence or in presence of 1.0 M trehalose. Complementary information is obtained by electrophoresis, circular dichroism, fluorescence spectroscopy, titration of SH groups and light scattering measurements. Results encouraged biotechnology and pharmaceutical application of the disaccharide and provided evidence for its utilization in degenerative diseases evolving via aggregation process.  相似文献   

6.
Thermal stress on bovine serum albumin (BSA) promotes protein aggregation through the formation of intermolecular beta-sheets. We have used light scattering and chromatography to study effects of (<1 M) Na(2)SO(4), NaSCN, sucrose, sorbitol and urea on the rate of the thermal aggregation. Both salts were strong inhibitors of BSA aggregation and they reduced both the size and number (concentration) of aggregate particles compared to non-ionic solutes (or pure buffer). Hence, the salts appear to suppress both nucleation- and growth rate. The non-electrolyte additives reduced the initial aggregation rate (compared to pure buffer), but did not significantly limit the extent of aggregation in samples quenched after 27 min. heat exposure (40-50% aggregation in all samples). The non-electrolytes did, however, modify the aggregation process as they consistently brought about smaller but more concentrated aggregates than pure buffer. The results are discussed along the lines of linkage- and transition state theories. In this framework, the rate of the aggregation process is governed by the equilibrium between a thermally denatured state (D) and the transition state D( not equal). Thus, the effect of a solute relies on its preferential interactions with respectively D and D( not equal). The current results do not show any correlation between the solutes' preferential interactions with native BSA and their effect on the rate of aggregation. This suggests that non-specific, "Hofmeister-type" interactions, which scale with the solvent accessible surface area, are of minor importance. Rather, salt induced suppression of aggregation is suggested to depend on the modulation of specific electrostatic forces in the D( not equal) state.  相似文献   

7.
The toxic effects of ethanol on bovine serum albumin (BSA) were measured by resonance light scattering (RLS), fluorescence spectroscopy, ultraviolet spectrophotometry (UV), circular dichroism (CD), and transmission electron microscopy (TEM). The results indicated that ethanol had toxic effects on BSA, which led to protein denaturation and the effects increased with the ethanol dose. By means of RLS, BSA was found to aggregate in the presence of ethanol and particles smaller than 100 nm were observed from TEM. The fluorescence spectra showed that the intensity of the characteristic peak of BSA decreased and blue shifted, because of changes in the BSA skeleton structure, as well as alteration of the microenvironment of tryptophan (Trp) residues. The conformation changes of BSA were also shown by UV and CD spectrometry. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:66–71, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20314  相似文献   

8.
We report here a study on thermal aggregation of BSA at two different pH values selected to be close to the isoelectric point (pI) of this protein. Our aim is to better understand the several steps and mechanisms accompanying the aggregation process. For this purpose we have performed kinetics of integrated intensity emission of intrinsic and extrinsic dyes, tryptophans and ANS respectively, kinetics of Rayleigh scattering and of turbidity. The results confirm the important role played by conformational changes in the tertiary structure, especially in the exposure of internal hydrophobic regions that promote intermolecular interactions. We also confirm that the absence of electrostatic repulsion favours the disordered non-specific interactions between molecules and consequently affects the aggregation rate. Finally, the comparison between BSA and another relative protein, HSA, allows us to clarify the role of different domains involved in the aggregation process. Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.  相似文献   

9.
Pressure can restrain the heat-induced aggregation and dissociate the heat-induced aggregates. We investigated the aggregation-preventing pressure effect and the aggregates-dissociating pressure effect to characterize the heat-induced aggregation of equine serum albumin (ESA) by Fourier transform infrared spectroscopy. The results suggest that the alpha-helical structure collapses at the beginning of heat-induced aggregation, then the rearrangement of structure from partially unfolded structure to the intermolecular beta-sheet takes place through the activated state. We determined the activation volume for the heat-induced aggregation (DeltaV( not equal)=+92+/-8 ml mol(-1)) and the partial molar volume difference between native state and heat-induced aggregates (DeltaV(N-->HA)=+32 ml mol(-1)). This positive partial molar volume difference suggests that the heat-induced aggregates have larger internal voids than the native structure. Moreover, the positive volume change implies that the formation of the intermolecular beta-sheet is unfavorable under high pressure. We also determined the free energy profile of ESA. This energy profile explains the restriction of the formation of heat-induced aggregates by pressure. These results explain the structural differences between heat-induced aggregates with intermolecular beta-sheet and pressure-induced aggregates without intermolecular beta-sheet.  相似文献   

10.
We report a kinetic study on thermal aggregation process of the model protein bovine serum albumin (BSA) in low concentration regime. Aim of this study is to provide information on relationship between conformational changes and initial step of aggregation. The experimental approach is based on steady-state fluorescence spectra of the two tryptophans located in two different domains, in way to study conformational changes in the surrounding of these residues. We also follow emission spectra of Fluorescein-5-Maleimide dye bound to the single free cysteine of BSA. Complementary information on the extent of aggregation and on the structural changes is obtained by Rayleigh scattering and circular dichroism measurements. These data contribute to clarify the connection between conformational changes at tertiary and secondary structure level during the aggregation and how the different domains are involved. We also discuss the relevant role played by cysteine 34 in the aggregation pathways.  相似文献   

11.
12.
Two-cell mouse embryos were cultured in Whitten's medium with one of three supplements: bovine serum albumin (WM + BSA), heat-treated bovine serum (WM + HTBS) or bovine uterine fluid (WM + BUF). Protein concentrations for cultures of WM + BSA were 50.2, 100.5, 251.2, 502.5, and 1005.0 mug/ml and for WM + HTBS were 70.4, 105.1, 269.0, 524.5 and 1193.9 mug/ml. Protein concentrations ranged from 56.9 to 739.1 mug/ml for 22 WM + BUF samples. Embryo development in all media was significantly correlated with the log total protein concentration. When compared to WM + BSA, development was not significantly inhibited or stimulated in any WM + BUF cultures or in WM with 70.4, 524.5 and 1193.9 mug/ml HTBS. Development was enhanced in WM with 105.1 and 269.0 mug/ml HTBS (P<0.05). The results suggest that at the protein concentrations used, culture media supplemented with BUF and BSA support similar mouse embryo development. Culture medium supplemented with HTBS supported embryo development more than medium with BSA. Uterine factors in the bovine capable of enhancing or inhibiting early embryo development were not detected.  相似文献   

13.
Circular dichroism spectroscopy was used to study the effect of l-arginine on the temperature related unfolding and aggregation of three growth hormones, i.e. human, porcine and mink growth hormones, and human interferon-α2b. l-arginine can stabilize some proteins and suppress their aggregation as it was exemplified by porcine and mink growth hormones. For some other proteins, on the contrary, the effect of arginine can be negative. Even at low concentrations the amino acid is able to promote the aggregation as it was demonstrated by the experiments with human growth hormone and interferon-α2b. l-arginine seems not to be a universal excipient for preventing the temperature related aggregation of proteins in contrast to its widespread application in the refolding process.  相似文献   

14.
15.
Metal ions are implicated in protein aggregation processes of several neurodegenerative pathologies. In this work the effects of Cu(II) and Zn(II) ions on heat-induced structural modifications of bovine serum albumin (BSA) were studied, with the aim of delineating the role of these ions in the early stages of proteins aggregation kinetics. A joint application of different techniques was used. The aggregate growth was followed by dynamic light scattering measurements, whereas the conformational changes occurring in the protein structure were monitored by Raman and IR spectroscopy. Both in absence and in presence of metal ions, heating treatment gave rise to β-structures to the detriment of α-helix conformation of BSA. The temperature of protein unfolding was not sensitively affected by the presence of Zn(II) or Cu(II) ions; on the contrary, only Zn(II) ions slightly promoted the heat-induced aggregation of the protein, since bigger aggregates were formed in their presence. The different efficacy of the Cu(II) and Zn(II) ions in promoting the BSA aggregation were highlighted by Raman measurements, assessing the role of His residues in metal binding. A distinct polypeptide folding of the two metal-BSA systems takes place, since the predominant mode of metal binding depends on metal. In particular, in Zn-BSA the metal coordination involves the imidazole Nτ atom of His which can promote inter-molecular cross-linking.  相似文献   

16.
17.
The effects of bovine serum albumin on rat pancreatic lipase and bovine milk lipoprotein lipase were studied in a system of triacylglycerol emulsions stabilized by 1 1 mg/ml albumin. At concentrations greater than 1 mg/ml, albumin inhibited the activity of pancreatic lipase and interfered with enzyme binding to emulsified triacylglycerol particles. These effects could be countered by occupying five fatty acid binding sites on albumin with oleic acid. Following an initial lag period which increased with albumin concentrations, enzyme activity escaped from inhibition presumably due to saturation of fatty acid sites on albumin with oleic acid. Pancreatic lipase was active at 1 mg/ml albumin and 1 mM emulsion-bound oleic acid in the system. The effects of albumin on lipoprotein lipase were diametrically opposed to the above; enzyme activity was completely inhibited by 0.1 mM oleic acid, it increased with increasing fatty acid-free albumin concentrations and decreased as the fatty acid sites on albumin were filled. At 1 mM oleic acid and no added albumin the enzyme failed to bind at the oil water interface, whereas fatty acid-free or saturated albumin had no effect on binding. It is concluded that if the inhibition of pancreatic lipase by albumin is due to the inaccessibility of the enzyme to an oil-water interface blocked by denatured albumin, then albumin saturated with oleic acid would seem to be protected from unfolding at the interface and more readily displaced by the lipase. Pancreatic lipase and lipoprotein lipase, although sharing a number of common features, are distinct enzymes both functionally and mechanistically.  相似文献   

18.
Aggregation and fibrillation of bovine serum albumin   总被引:2,自引:0,他引:2  
The all-alpha helix multi-domain protein bovine serum albumin (BSA) aggregates at elevated temperatures. Here we show that these thermal aggregates have amyloid properties. They bind the fibril-specific dyes Thioflavin T and Congo Red, show elongated although somewhat worm-like morphology and characteristic amyloid X-ray fiber diffraction peaks. Fibrillation occurs over minutes to hours without a lag phase, is independent of seeding and shows only moderate concentration dependence, suggesting intramolecular aggregation nuclei. Nevertheless, multi-exponential increases in dye-binding signal and changes in morphology suggest the existence of different aggregate species. Although beta-sheet content increases from 0 to ca. 40% upon aggregation, the aggregates retain significant amounts of alpha-helix structure, and lack a protease-resistant core. Thus BSA is able to form well-ordered beta-sheet rich aggregates which nevertheless do not possess the same structural rigidity as classical fibrils. The aggregates do not permeabilize synthetic membranes and are not cytotoxic. The ease with which a multidomain all-alpha helix protein can form higher-order beta-sheet structure, while retaining significant amounts of alpha-helix, highlights the universality of the fibrillation mechanism. However, the presence of non-beta-sheet structure may influence the final fibrillar structure and could be a key component in aggregated BSA's lack of cytotoxicity.  相似文献   

19.
The effects of insect cell culture medium supplementation with FBS were investigated. BSA was found to be the factor responsible for the increased baculovirus infection rate of FBS-supplemented cultures in a concentration-dependent form up to 25 g L(-)(1). Lower rates of baculovirus binding to cells were observed with FBS- and BSA-supplemented cultures compared with infections carried out in serum-free media. Virus attachment constants were found to depend on medium matrix composition. An efficiency factor dependent on the medium matrix composition was introduced to account for these effects, and a mathematical model was developed to describe the virus-cell interactions. It was shown that BSA acts by minimizing the nonspecific virus binding leading to an increased cell infection rate. Cell specific Porcine parvovirusvirus-like particles (PPV-VLPs) expression was unaffected by medium supplementation pointing out that BSA and/or FBS affects mainly the initial phase of the baculovirus infection cycle. Implications for process definition are discussed.  相似文献   

20.
Sodium dodecyl sulfate (SDS), as an anionic surfactant, can induce protein conformational changes. Recent investigations demonstrated different effects of SDS on protein amyloid aggregation. In the present study, the effect of SDS on amyloid aggregation of bovine serum albumin (BSA) was evaluated. BSA transformed to β-sheet-rich amyloid aggregates upon incubation at pH 7.4 and 65°C, as demonstrated by thioflavin T fluorescence, circular dichroism, and transmission electron microscopy. SDS at submicellar concentrations inhibited BSA amyloid aggregation with IC50 of 47.5 μM. The inhibitory effects of structural analogs of SDS on amyloid aggregation of BSA were determined to explore the structure–activity relationship, with results suggesting that both anionic and alkyl moieties of SDS were critical, and that an alkyl moiety with chain length ≥10 carbon atoms was essential to amyloid inhibition. We attributed the inhibitory effect of SDS on BSA amyloid aggregation to interactions between the detergent molecule and the fatty acid binding sites on BSA. The bound SDS stabilized BSA, thereby inhibiting protein transformation to amyloid aggregates. This study reports for the first time that the inhibitory effect of SDS on albumin fibrillation is closely related to its alkyl structure. Moreover, the specific binding of SDS to albumin is the main driving force in amyloid inhibition. This study not only provides fresh insight into the role of SDS in amyloid aggregation of serum albumin, but also suggests rational design of novel antiamyloidogenic reagents based on specific-binding ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号