首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been proposed that abscisic acid (ABA) may stimulate sucrose transport into filling seeds of legumes, potentially regulating seed growth rate. The objective of this study was to determine whether the rate of dry matter accumulation in seeds of soybeans (Glycine max L.) is correlated with the endogenous levels of ABA and sucrose in those sinks. The levels of ABA and sucrose in seed tissues were compared in nine diverse Plant Introduction lines having seed growth rates ranging from 2.5 to 10.0 milligrams dry weight per seed per day. At 14 days after anthesis (DAA), seeds of all genotypes contained less than 2 micrograms of ABA per gram fresh weight. Levels of ABA increased rapidly, however, reaching maxima at 20 to 30 DAA, depending upon tissue type and genotype. ABA accumulated first in seed coats and then in embryos, and ABA maxima were higher in seed coats (8 to 20 micrograms per gram fresh weight) than in embryos (4 to 9 micrograms per gram fresh weight. From 30 to 50 DAA, ABA levels in both tissues decreased to less than 2 micrograms per gram fresh weight. Levels of sucrose were also low early in development, less than 10 milligrams per gram fresh weight at 14 DAA. However, by 30 DAA, sucrose levels in seed coats had increased to 20 milligrams per gram fresh weight and remained fairly constant for the remainder of the filling period. In contrast, sucrose accumulated in embryos throughout the filling period, reaching levels greater than 40 milligrams per gram fresh weight by 50 DAA. Correlation analyses indicated that the level of ABA in seed coats and embryos was not directly correlated to the level of sucrose measured in those tissues or to the rate of seed dry matter accumulation during the linear filling period. Rather, the ubiquitous pattern of ABA accumulation early in development appeared to coincide with water uptake and the rapid expansion of cotyledons occurring at that time. Whole tissue sucrose levels in embryos and seed coats, as well as sucrose levels in the embryo apoplast, were generally not correlated with the rate of dry matter accumulation. Thus, it appears that, in this set of diverse soybean genotypes, seed growth rate was not limited by endogenous concentrations of ABA or sucrose in reproductive tissues.  相似文献   

2.
Water deficits during seed filling decrease seed size in soybean (Glycine max L.). This may result from a reduction in the supply of assimilates from the maternal plant and/or an inhibition of seed metabolism. To determine whether maternal or zygotic factors limited seed growth, we examined the effects of a plant water deficit on the supply of sucrose to and its utilization by developing embryos. Plants were grown in the greenhouse, and water deficits were imposed by withholding water for a period of 6 days during linear seed fill. When water was withheld, leaf water potential decreased rapidly, inhibiting canopy photosynthesis completely within 3 days. However, seed dry weight (nodes 7-11) continued to increase at or near the control rate. The level of total extractable carbohydrates in leaf, stem, and pericarp tissue decreased by 70, 50, and 45%, respectively, indicating that reserves were mobilized to support seed growth. Cotyledon sucrose content decreased from about 60 milligrams per gram dry weight to 30 milligrams per gram dry weight. Similarly, the concentration of sucrose in the interfacial apoplast of the cotyledons decreased from approximately 100 millimolar to 50 millimolar. However, the rate of sucrose accumulation by excised embryos, measured in a short-term in vitro assay, increased in response to the water deficit. These results indicate that both source and sink activity in soybean are altered by water deficits to maintain the flux of assimilates to the developing embryos. This may explain why seed growth is maintained, albeit for a shorter duration, when soybean is exposed to water deficits during the seed filling period.  相似文献   

3.
Three different culture media have been examined for their ability to support growth in culture of embryos of two pea lines near-isogenic except for the r-locus. Embryos showed a greater increase in fresh weight on a medium containing 10% sucrose and a high level of a mixture of amino acids than on either one containing an equivalent amount of glutamine as the sole nitrogen source or one containing both inorganic nitrogen and a low level of glutamine. Small embryos (up to 10 mg fresh weight) showed the greatest relative increase in fresh weight. Decreasing the osmotic pressure of an agar medium by lowering the sucrose content to 2% and reducing the concentration of amino acids induced precocious germination. Shoot growth was more sensitive than root growth to increasing sucrose concentrations and optimum development was obtained when embryos were cultured in liquid culture at a high osmotic pressure followed by growth on an agar medium at low osmotic pressure. Alternatively, precocious germination could be induced by removing the cotyledons. Embryos of all sizes and of both genotypes of pea responded in a similar manner.  相似文献   

4.
Changes in the carbohydrate profiles in the mesocarp, endocarp, and seeds of maturing cucumber (Cucumis sativus, L.) fruit were analyzed. Fruit maturity was measured by a decrease in endocarp pH, which was found to correlate with a loss in peel chlorophyll and an increase in citric acid content. Concentrations of glucose and fructose (8.6-10.3 milligrams per gram fresh weight, respectively) were found to be higher than the concentration of sucrose (0.3 milligrams per gram fresh weight) in both mesocarp and endocarp tissue. Neither raffinose nor stachyose were found in these tissues. The levels of glucose and fructose in seeds decreased during development, but sucrose, raffinose, and stachyose accumulated during the late stages of maturation. Both raffinose and stachyose were found in the seeds of six lines of Cucumis sativus L. This accumulation of raffinose saccharides coincided with an increase in galactinol synthase activity in the seeds. Funiculi from maturing fruit were found to be high in sucrose concentration (4.8 milligrams per gram fresh weight) but devoid of both raffinose and stachyose. The results indicated that sucrose is the transport sugar from the peduncle to seed, and that raffinose saccharide accumulation in the seed is the result of in situ biosynthesis and not from direct vascular transport of these oligosaccharides into the seeds.  相似文献   

5.
The influence of abscisic acid (ABA) on the precocious germinationand storage protein production of pea seeds has been examinedusing embryo and pod culture. The precocious germination ofembryos in culture could not be inhibited fully by ABA on apermissive medium (2% sucrose) even at 0.1 mol m–3. However,increasing the sucrose concentration to 5% caused near completeinhibition when ABA was added to the medium. Embryos of differentweights cultured on a high osmoticum (mannitol-containing medium),equivalent to 10% sucrose, did not show any consistent differencein ABA content. When fluridone was added to a non-permissiveculture medium, no decrease in ABA content of the embryos couldbe observed and no precocious germination was induced. In contrast,fluridone was able to prevent the accumulation of ABA in seedspresent in pods cultured in its presence from an early stageof development. These seeds, however, grew normally and reachedmaturity, did not germinate precociously in vivo, were desiccationtolerant and still produced storage protein message whetheror not ABA was included in the culture medium. It does not appear,therefore, that ABA regulates normal development or storageprotein synthesis in pea embryos. Key words: Abscisic acid, peas, Pisum sativum, seed development  相似文献   

6.
One hundred years of zygotic embryo culture investigations   总被引:4,自引:0,他引:4  
Summary Isolation of zygotic embryos from seeds and their culture in a defined medium, initiated by Hanning in 1904, has proved to be a promising method to study the factors that control growth and differentiation of embryos. Using this technique, several investigations have focused on the carbohydrate and nitrogen nutrition during germination of cultured seed embryos and on the effects of plant hormones on their morphogenesis. Culture of immature embryos leads to their germination into weak seeldings, skipping the later stages of embryogenesis, by a process known as precocious germination. Progressively smaller embryos have been cultured by supplementation of the medium with coconut milk or hormonal additives or by osmotic adjustment of the medium by high concentrations of sucrose or mannitol. Although methods have not been developed for large-scale isolation and culture of zygotes, zygotes of maize isolated from embryo sacs and those obtained by in vitro fertilization have been grown in culture into full-term embryos. Embryo culture techniques are widely used to rescue embryos from seed of wide crosses which usually abort and to overcome dormancy of recalcitrant seeds.  相似文献   

7.
The time-course of sucrose efflux from attached seedcoats (having their embryos surgically removed) into aqueous traps placed in the `empty ovules' had three phases. The first phase lasted 10 minutes and probably was a period of apoplastic flushing. The second lasted 2 to 3 hours and is thought to be a phase of equilibration of seed coat symplast with the frequently refreshed liquid. The third phase of relatively steady efflux was postulated to reflect the continued import of sucrose from the plant, and hence to reflect the rate of sieve tube unloading. The average steady state efflux was equal under most conditions to the estimated rate of sucrose import. Efflux and import were unaffected by 150 millimolar osmoticum (mannitol or polyethylene glycol [molecular weight about 400]), by 0.5 millimolar CaCl2, or by pretreatments up to 20 minutes with p-chloromercuribenzenesulfonic acid (PCMBS); they were enhanced by 40 micromolar abscisic acid, 40 micromolar indoleacetic acid, 20 micromolar fusicoccin, and 1 millimolar dithiothreitol (DTT) and were inhibited by 100 micromolar KCN, by 0.03% H2O2, by 20 micromolar and 5 micromolar trifluoromethoxy (carbonyl cyamide) phenylhydrazone, by repeated 5 minutes per hour treatments with 5 millimolar PCMBS, and by 5 millimolar DTT. The `steady state' sucrose efflux was able to account for about half the rate of dry weight growth of the embryo, but stabilization of the system with <1 millimolar DTT taken together with other considerations is likely to give good correspondence between experimental unloading rates and in vivo growth rates.  相似文献   

8.
Muskmelon (Cucumis melo L.) seeds are germinable 15 to 20 days before fruit maturity and are held at relatively high water content within the fruit, yet little precocious germination is observed. To investigate two possible factors preventing precocious germination, the inhibitory effects of abscisic acid and osmoticum on muskmelon seed germination were determined throughout development. Seeds were harvested at 5-day intervals from 30 to 65 days after anthesis (DAA) and incubated either fresh or after drying on factorial combinations of 0, 1, 3.3, 10, or 33 micromolar abscisic acid (ABA) and 0, −0.2, −0.4, −0.6, or −0.8 megapascals polyethylene glycol 8000 solutions at 30°C. Radicle emergence was scored at 12-hour intervals for 10 days. In the absence of ABA, the water potential (Ψ) required to inhibit fresh seed germination by 50% decreased from −0.3 to −0.8 megapascals between 30 and 60 DAA. The Ψ inside developing fruits was from 0.4 to 1.4 megapascals lower than that required for germination at all stages of development, indicating that the fruit Ψ is sufficiently low to prevent precocious germination. At 0 megapascal, the ABA concentration required to inhibit germination by 50% was approximately 10 micromolar up to 50 DAA and increased to >33 micromolar thereafter. Dehydration improved subsequent germination of immature seeds in ABA or low Ψ. There was a linear additive interaction between ABA and Ψ such that 10 micromolar ABA or −0.5 megapascal osmotic potential resulted in equivalent, and additive, reductions in germination rate and percentage of mature seeds. Abscisic acid had no effect on embryo solute potential or water content, but increased the apparent minimum turgor required for germination. ABA and osmoticum appear to influence germination rates and percentages by reducing the embryo growth potential (turgor in excess of a minimum threshold turgor) but via different mechanisms. Abscisic acid apparently increases the minimum turgor threshold, while low Ψ reduces turgor by reducing seed water content.  相似文献   

9.
Soybean [Glycine max (L.) Merrill] seeds and cotyledons weregrown in an in vitro culture system to investigate the relationshipsbetween cell expansion (net water uptake by the seed) and drymatter accumulation. Seeds or cotyledons grown in a completenutrient medium containing 200 mol m–3 sucrose continueddry matter accumulation for up to 16 d after in planta seedsreached physiological maturity (maximum seed dry weight). Seedor cotyledon water content increased throughout the cultureperiod and the water concentration remained above 600 g kg–1fresh weight. These data indicate that the cessation of seeddry matter accumulation is controlled by the physiological environmentof the seed and is not a pre-determined seed characteristic.Adding 600 mol m–3 mannitol to the medium caused a decreasein seed water content and concentration. Seeds in this mediumstopped accumulating dry matter at a water concentration ofapproximately 550 g kg–1. The data suggest that dry matteraccumulation by soybean seeds can continue only as long as thereis a net uptake of water to drive cell expansion. In the absenceof a net water uptake, continued dry matter accumulation causesdesiccation which triggers maturation. Key words: Glycine max (L.) Merrill, solution culture, duration of seed growth, water content, dry matter accumulation  相似文献   

10.
Chilling sensitive regenerable maize (Zea mays L.) callus cultures can be induced to survive prolonged exposure to 4°C by treatments with mannitol, abscisic acid (ABA), and/or high levels of proline. Maize callus with a free proline content of about 122 micromoles/grain fresh weight survived longer exposures to 4°C than did callus with a free proline content of about 68 micromoles/grain fresh weight. The addition of 0.53 molar mannitol or 0.1 millimolar ABA to culture medium produced a free proline content in maize callus of about 136 and 145 micromoles/grain fresh weight, respectively, if the medium contained 12 millimolar proline or about 36 and 1 micromoles/grain fresh weight, respectively, if no proline was in the medium. Although these mannitol and ABA treatments produced drastically different free proline levels in maize callus, callus grown on these media survived longer exposures to 4°C than did maize callus grown on any proline treatment alone. Thus, the internal free proline level of treated callus is not the primary factor conferring chilling tolerance on these tissues.  相似文献   

11.
In contrast to wild-type seeds of Arabidopsis thaliana and to seeds deficient in (aba) or insensitive to (abi3) abscisic acid (ABA), maturing seeds of recombinant (aba,abi3) plants fail to desiccate, remain green, and lose viability upon drying. These double-mutant seeds acquire only low levels of the major storage proteins and are deficient in several low mol wt polypeptides, both soluble and bound, and some of which are heat stable. A major heat-stable glycoprotein of more than 100 kilodaltons behaves similarly; during seed development, it shows a decrease in size associated with the abi3 mutation. In seeds of the double mutant from 14 to 20 days after pollination, the low amounts of various maturation-specific proteins disappear and many higher mol wt proteins similar to those occurring during germination are induced, but no visible germination is apparent. It appears that in the aba,abi3 double mutant seed development is not completed and the program for seed germination is initiated prematurely in the absence of substances protective against dehydration. Seeds may be made desiccation tolerant by watering the plants with the ABA analog LAB 173711 or by imbibition of isolated immature seeds, 11 to 15 days after pollination, with ABA and sucrose. Whereas sucrose stimulates germination and may protect dehydration-sensitive structures from desiccation damage, ABA inhibits precocious germination and is required to complete the program for seed maturation and the associated development of desiccation tolerance.  相似文献   

12.
Responses to sucrose and glutamine by soybean embryos grown in vitro   总被引:2,自引:0,他引:2  
Immature soybean (Glycine max [L.] Merr. cv. Ransom) embryos were grown in vitro in the presence of different concentrations of sucrose and glutamine to examine how availability of carbohydrate and nitrogen affects dry matter accumulation and embryo composition. Embryos were transferred to fresh medium every 4 days to maintain sucrose and glutamine concentrations of the culture medium. In all experiments, accumulation of dry matter and protein content increased when the sucrose concentration of the culture medium was increased from 1.5 to 150 mM: however, a relatively greater enhancement of dry matter than of protein accumulation resulted in a lower protein concentration at 150 than at 1.5 mM sucrose. Both content and concentration of protein were increased by the increases in glutamine supply to concentrations exceeding 68% protein at 120 mM glutamine. In combination with 150 mM sucrose, however, oil increased as glutamine supply was increased from 0.6 to 6 mM and then decreased as glutamine supply was increased from 6 lo 120 mM. Varying the concentration of sucrose available during seed development also affected embryo composition. Decreased availability of sucrose during either the early or late portion of the culture period resulted in lower accumulation of dry mailer as well as oil. Protein concentration was actually higher for embryos transferred from 150 to 1.5 nM sucrose than for those remaining in 150 mM throughout the culture period: however, the greater percentage of protein was due lo a decrease in accumulation of dry weight. In addition, embryo composition was affected by altering the availability of glutamine during culture, indicating that variation in the level of nitrogen assimilate delivered during seed development can change embryo composition. Decreasing the glutamine concentration of the medium lowered both protein and oil content. In contrast, increasing the glutamine concentration of the medium from 0.6 to 6 mM 8 days after initiation of culture increased the protein content and concentration of the embryo while oil content was not affected.  相似文献   

13.
Braun JW  Khan AA 《Plant physiology》1975,56(6):731-733
The concentrations of abscisic acid in Grand Rapids lettuce (Lactuca sativa L.) seeds imbibed under conditions which promote or inhibit germination were determined by electron capture-gas chromatography. The concentration of abscisic acid in dry seeds was 12 to 14 nanograms per 100 milligrams. During 24-hour imbibition, the abscisic acid content diminished more rapidly during conditions which allow germination (25 C in light) than in conditions which inhibited germination (35 C in light or darkness at 25 C). A decrease in endogenous levels of abscisic acid was not always correlated with germination.  相似文献   

14.
The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply.  相似文献   

15.
Seed growth rate and carbohydrate pool sizes of the soybean fruit   总被引:6,自引:2,他引:4       下载免费PDF全文
The relationships between various carbohydrate pools of the soybean (Glycine max [L.] Merrill) fruit and growth rate of seeds were evaluated. Plants during midpod-fill were subjected to various CO2 concentrations or light intensities for 7 days to generate different rates of seed growth. Dry matter accumulation rates of seeds and pod wall, along with glucose, sucrose, and starch concentrations in the pod wall, seed coat, and embryo were measured in three-seeded fruits located from nodes six through ten. Seed growth rates ranged from 4 to 37 milligrams·day−1·fruit−1. When seed growth rates were greater than 12 milligrams·day−1·fruit−1, sucrose concentration remained relatively constant in the pod wall (1.5 milligrams·100 milligrams dry weight−1), seed coat (8.5 milligrams·100 milligrams dry weight−1), and embryo (5.0 milligrams·100 milligrams dry weight−1). However, sucrose concentrations decreased in all three parts of the fruit as growth rate of the seeds fell below 12 milligrams·day−1·fruit−1. This relationship suggests that at high seed growth rates, flux of sucrose through the sucrose pools of the fruit was more important than pool size for growth. Starch concentration in the pod wall remained relatively constant (2 milligrams·100 milligrams dry weight−1) at higher rates of seed growth but decreased as seed growth rates fell below 12 milligrams·day−1·fruit−1. This suggests that pod wall starch may buffer seed growth under conditions of limiting assimilate availability. There was no indication that carbohydrate pools of the fruit were a limitation to transport or growth processes of the soybean fruit.  相似文献   

16.
Immature embryos of Brassica napus were cultured in vitro with and without various concentrations of germination inhibitors, and the progress of embryogeny was monitored by comparing accumulation of storage proteins in culture with the normal accumulation in seeds. The two major B. napus storage proteins (12S and 1.7S) were purified from seed extracts and analyzed by rocket immunoelectrophoresis (12S protein) or by sodium lauryl sulfate polyacrylamide gel electrophoresis (1.7S protein). During embryo development within seeds both the 12S and 1.7S proteins were first detected when the cotyledons were well developed (embryo dry weight, 0.4 mg), and each storage protein accumulated at an average rate of 26 g d-1 during maximum deposition. Accumulation of the 1.7S protein stopped when the water content of the embryo began to decline (embryo DW, 2.7 mg), but accumulation of the 12S protein continued until seed maturity (embryo DW, 3.6 mg). At the end of embryo development the 12S and the 1.7S proteins comprised approx. 60 and 20% of the total salt-soluble protein, respectively. When embryos were removed from seeds at day 27, just as storage protein was starting to accumulate, and placed in culture on a basal medium, they precociously germinated within 3d, and incorporation of amino acids into the 12S storage protein dropped from 3% of total incorporation to less than 1%. If 10-6 M abscisic acid (ABA) was included in the medium, amino-acid incorporation into the 12S protein increased from 3% of total incorporation when embryos were placed into culture to 18%, 5d later, and the accumulation rate (27.1±2.6 g embryo-1 d-1) matched the maximum rate observed in the seed. High osmotica, such as 0.29 M sucrose or mannitol, added to the basal medium, also inhibited precocious germination, but there was a lag period before 12S-protein synthesis rates equaled the rates on ABA media. These results indicate that some factor in the seed environment is necessary for storage-protein synthesis to proceed, and that ABA is a possible candidate.Abbreviations ABA abscisic acid - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - SDS sodium lauryl sulfate  相似文献   

17.
Abscisic Acid and its relationship to seed filling in soybeans   总被引:30,自引:10,他引:20       下载免费PDF全文
The effect of exogenous abscisic acid (ABA) on the rate of sucrose uptake by soybean (Glycine max L. Merr.) embryos was evaluated in an in vitro system. In addition, the concentrations of endogenous ABA in seeds of three soybean Plant Introduction (PI) lines, differing in seed size, were commpared to their seed growth rates. ABA (10−7 molar) stimulated in vitro sucrose uptake in soybean (cv `Clay') embryos removed from plants grown in a controlled environment chamber, but not in embryos removed from field-grown plants of the three PI lines. However, the concentration of ABA in seeds of the three field-grown PI lines correlated well with their in situ seed growth rates and in vitro [14C] sucrose uptake rates.

Across genotypes, the concentration of ABA in seeds peaked at 8.5 micrograms per gram fresh weight, corresponding to the time of most rapid seed growth rate, and declined to 1.2 micrograms per gram at physiological maturity. Seeds of the large-seeded genotype maintained an ABA concentration at least 50% greater than that of the small-seeded genotype throughout the latter half of seed filling. A higher concentration of ABA was found in seed coats and cotyledons than in embryonic axes. Seed coats of the large-seeded genotype always had a higher concentration of ABA than seed coats of the small-seeded line. It is suggested that this higher concentration of ABA in seed coats of the large-seeded genotype stimulates sucrose unloading into the seed coat apoplast and that ABA in cotyledons may enhance sucrose uptake by the cotyledons.

  相似文献   

18.
Immature Glycine max (L.) Merr. seeds initially at 50–70mg fresh weight were successfully grown and matured in vitroin detached pods. Surface sterilized pods were floated in aliquid medium containing 5 per cent sucrose, minerals, and glutaminein 125 ml Erlenmeyer flasks and incubated at 25 °C under350–400 µE m–1 s–1 white light. Seedswhich were matured in vitro increased tenfold in dry weight,were visually similar to commercial seeds of the same size,were tolerant to desiccation and germinated with normal seedlinggrowth. Excised pods transported dye from the pedicel to thegrowing seed within 120 min. Soya bean pod culture is a usefultechnique to study the influence of single or combinations ofchemical or environmental parameters on regulation of seed growth,seed maturation, and subsequent germination events without theconfounding interactions with the mother plant. Glycine max (L.) Merr., soya bean, pod culture, seed culture, seed growth, seed maturation, germination  相似文献   

19.
Compared to seeds, somatic embryos accumulated relatively low levels and different types of storage carbohydrates. The regulation of starch accumulation was studied to determine its effects on desiccation tolerance and vigor of dry somatic embryos. Somatic embryos of Medicago sativa are routinely matured through three phases: 7 days of development; 10 days of phase I maturation, a rapid growth phase; and 10 days of phase II maturation, a phase leading to the acquisition of desiccation tolerance. The control of starch deposition was investigated in alfalfa somatic embryos by manipulating the composition of the phase I maturation medium with different levels of sucrose, abscisic acid, glutamine and different types of carbohydrates and amino acids. After phase II maturation, mature somatic embryos were collected for desiccation and subsequent conversion, or for biochemical analyses. Starch deposition occurred primarily during phase I maturation, and variations in the composition of this medium influenced embryo quality, storage protein and starch accumulation. A factorial experiment with two levels of glutamine × three levels of sucrose showed that increasing the sucrose concentration from 30 to 80 g/l increased embryo size and starch content, but had minimal effect on accumulation of storage proteins; glutamine also increased embryo size, but decreased starch content and increased accumulation of the high salt soluble S-2 (medicagin) storage proteins. ABA did not influence any of the parameters tested when included in phase I maturation at concentration up to 10 μM. Replicating sucrose with maltose, glucose, or glucose and fructose did not alter embryo size or starch accumulation (mg/g fresh weight), but replacement with fructose alone reduced embryo size, and replacement with glucose alone reduced germination. Suplementation with the amino acids, asparagine, aspartic acid and glutamine increased seedling vigor, but decreased the starch content of embryos. The data indicate that starch accumulation in somatic embryos is regulated by the relative availability of carbon versus nitrogen nutrients in the maturation medium. The quality of mature somatic embryos, determined by the rate of seedling development (conversion and vigor), correlated with embryo size, storage protein and free amino acid but not with starch. Therefore, further improvements in the quality of somatic embryo may be achieved through manipulation of the maturation medium in order to increase storage protein, but not starch deposition.  相似文献   

20.
Endosperm protein of wheat seed as a determinant of seedling growth   总被引:2,自引:2,他引:0       下载免费PDF全文
Seed of a Mexican semidwarf wheat (Triticum aestivum L. cv. Inia 66), was obtained from a nitrogen fertilizer field trial grown in Mexico. A high positive correlation was obtained between seed protein content and seedling dry weight after 3 weeks growth (r = +0.92**). The seedling dry weight was positively related to the protein content of the aleurone layer and endosperm, but not to the embryo. Small, 35 milligrams, high protein seeds (4.7 milligrams protein per seed) produced larger seedlings than large, 45 milligrams, low protein seeds (4.3 milligram protein per seed). There was no difference in the weight or protein content of embryos from low and high protein seeds and their growth was similar. Composite seeds of the two protein levels were produced by transferring embryos from one endosperm type to the other. After 4 weeks, there was no difference between the different embryo types grown on the same endosperm type. High protein endosperm produced more vigorous seedlings regardless of the embryo type grown on it, indicating that the factor(s) responsible for the greater growth of high protein seed is in the endosperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号