首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

2.
Differences in herbivory among woody species can greatly affect the functioning of forest ecosystems, particularly in species-rich (sub)tropical regions. However, the relative importance of the different plant traits which determine herbivore damage remains unclear. Defence traits can have strong effects on herbivory, but rarely studied geographical range characteristics could complement these effects through evolutionary associations with herbivores. Herein, we use a large number of morphological, chemical, phylogenetic and biogeographical characteristics to analyse interspecific differences in herbivory on tree saplings in subtropical China. Unexpectedly, we found no significant effects of chemical defence traits. Rather, herbivory was related to the plants' leaf morphology, local abundance and climatic niche characteristics, which together explained 70% of the interspecific variation in herbivory in phylogenetic regression. Our study indicates that besides defence traits and apparency to herbivores, previously neglected measures of large-scale geographical host distribution are important factors influencing local herbivory patterns among plant species.  相似文献   

3.
Aim The majority of studies concerning positive interspecific abundance–occupancy relationships have used broad‐scale and microcosm data to test the occurrence and correlates of the relationship to determine which of the proposed mechanisms give rise to it. It has been argued recently that studying the residual variation about abundance–occupancy relationships is a more logical analysis and may yield faster progress in identifying the relative roles of the mechanisms. However, to date this approach has been largely unsuccessful. Here we test if fundamental species traits such as the status (native and introduced), habitat and trophic group of mammal and bird species may explain any of the residual variation about their respective abundance–occupancy relationships. Location The study used British mammal and bird species. Methods We tested if species traits explained any of the variation about abundance–occupancy relationships using linear regression techniques both treating species as independent data points for analysis and controlling for phylogenetic association. Results None of the species traits could explain any residual variation about the positive interspecific abundance–occupancy relationships of British mammals and birds. This applied both when treating species as independent data points and after controlling for phylogenetic association. Conclusions Given the lack of explanatory power of the species traits here and in other studies using this approach it seems that the variation about positive interspecific abundance–occupancy relationships is not explicable in a simple fashion. Predicting the likely influence of traits that are independent of phylogeny is also problematic. Therefore, the general utility of this approach and its future role in understanding the mechanisms causing positive interspecific abundance–occupancy relationships is doubtful.  相似文献   

4.
Alex Fajardo  Andrew Siefert 《Oikos》2019,128(6):881-891
It is assumed that widespread, generalist species have high phenotypic variation, but we know little about how intraspecific trait variation (ITV) relates to species abundance and niche breadth. In the temperate rainforest of southern Chile, we hypothesized that species with wide niche breadth would exhibit 1) high among‐plot ITV, 2) a strong relationship between trait values and the environment, and 3) a close fit between traits and local environment trait optima. We measured leaf functional traits (leaf area, LMA, leaf N and P concentrations) of saplings in woody species, and compared the relative abundance of each species with its niche breadth, measured as the range of light, soil N and P availability. We used the slope of the linear regression of species’ trait–environment relationships to assess the strength and direction of these relationships, and measured the degree to which species’ trait values track the environmental optimum across plots. In some cases, species having wide niche breadth had high ITV in leaf N and also matched traits (LMA and leaf P) to local optima along the light gradient; they also had high ITV in general and matched leaf P to local optima along the soil P gradient. The relationship between species with wide niche breadth and the strength of intraspecific trait–environment relationships was generally weak and varied depending on the niche dimension and trait in question. Species varied considerably in the strength of trait–environment relationships and total magnitude of ITV, and this variation was not generally strongly related to species abundances or niche breadth patterns. In conclusion, trait variation at the community level is not driven by a few abundant, widely distributed species, but depends on the aggregate trait responses of both abundant and rare species. This makes it difficult to scale individual species trait responses up to the community level.  相似文献   

5.
Questions: What are the water economy strategies of the dominant subarctic bryophytes in terms of colony and shoot traits? Can colony water retention capacity be predicted from morphological traits of both colonies and separate shoots? Are suites of water retention traits consistently related to bryophyte habitat and phylogenetic position? Location: Abisko Research Station, North Sweden. Methods: We screened 22 abundant subarctic bryophyte species from diverse habitats for water economy traits of shoots and colonies, including desiccation rates, water content at field capacity, volume and density (mg cm?3) of water‐saturated and oven‐dried patches, evaporation rate (g·m?2·s?1) and cell wall thickness. The relationships between these traits and shoot and colony desiccation rates were analysed with Spearman rank correlations. Subsequent multivariate (cluster followed by PCA) analyses were based on turf density, turf and shoot desiccation rate, cell wall thickness and amount of external and internal water. Results: Individual shoot properties, i.e. leaf cell wall properties, water retention capacity and desiccation rate, did not correspond with colony water retention capacity. Colony desiccation rate depended on density of water‐saturated colonies, and was marginally significantly negatively correlated with species individual shoot desiccation rate but not related to any other shoot or colony trait. Multivariate analyses based on traits assumed to determine colony desiccation rate revealed six distinct species groups reflecting habitat choice and phylogenetic relationships. Conclusions: General relationships between shoot and colony traits as determinants of water economy will help to predict and upscale changes in hydrological function of bryophyte‐dominated peatlands undergoing climate‐induced shifts in species abundance, and feedbacks of such species shifts on permafrost insulation and carbon sequestration functions.  相似文献   

6.
Aims Comparisons of the trait–abundance relationships from various habitat types are critical for community ecology, which can offer us insights about the mechanisms underlying the local community assembly, such as the relative role of neutral vs. niche processes in shaping community structure. Here, we explored the responses of trait–abundance relationships to nitrogen (N), phosphorus (P) and potassium (K) fertilization in an alpine meadow.Methods Five fertilization treatments (an unfertilized control and additions of N, P, K and NPK respectively) were implemented using randomized block design in an alpine Tibetan meadow. Species relative abundance (SRA), plant above-ground biomass and species richness were measured in each plot. For 24 common species, we measured species functional traits: saturated height, specific leaf area (SLA) and leaf dry matter content (LDMC) in each treatment but seed size only in the unfertilized control. Standard major axis (SMA) regression and phylogenetically independent contrasts (PICs) analysis were used to analyse species trait–abundance relationships in response to different fertilization treatments.Important findings Positive correlations between SRA and saturated height were raised following N, P and NPK fertilizations, which indicated an increase in light competition in these plots. In P fertilized plots, SRA was also positively correlated with LDMC because tall grasses with a nutrients conservation strategy often have a relative competitive advantage in capturing limited light and soil nutrients. In K fertilized plots, neither the trait–abundance relationships nor above-ground biomass or species richness significantly differed from that in the control, which suggests that K was not a limiting resource in our study site. These significant correlations between species traits and relative abundance in fertilized treatment suggest that trait-based selection plays an important role in determining species abundance within local communities in alpine meadows.  相似文献   

7.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   

8.
本研究以亚热带29种3年生人工纯林为对象,研究了29个树种功能性状与氮磷重吸收效率的关系。结果表明: 29种幼林平均氮、磷重吸收效率分别为50.5%和57.3%。22种丛枝菌根树种的氮重吸收效率平均为52.7%,显著高于7种外生菌根树种(45.1%)。29个树种的细根组织密度与氮重吸收效率呈显著正相关,7种外生菌根树种细根直径与磷重吸收效率呈显著正相关,22种丛枝菌根树种的功能性状对氮重吸收效率和磷重吸收效率无显著影响。在29个树种中,菌根类型、比叶面积、细根组织密度、叶厚度及叶厚度与菌根类型的相互作用共同解释氮重吸收效率变异的27%,比根长、细根碳含量、细根碳氮比、菌根类型、叶片碳含量及叶片碳含量与菌根类型的相互作用共同解释磷重吸收效率变异的35%。因此,亚热带树种根系功能性状能较好地预测了氮、磷养分重吸收效率,综合多个功能性状可以更好地揭示不同生物因子对养分重吸收的相对重要性。  相似文献   

9.
Through identifying and understanding ecologically important dimensions of plant trait variation we gain insight into why particular trait combinations are favoured and into the implications of trait differences among species. Here, we describe relationships among several poorly understood leaf and stem traits across species from several Australian vegetation types. Species with lower wood density (WD) consistently deployed more leaf area per unit shoot mass (LA/SM), as did the larger-leaved species within forested sites. Higher LA/SM is likely to lead to faster growth rates, implying a previously unrecognized implication to interspecific variation in leaf size and WD. Leaf : sapwood area ratio is one of several important traits contributing to a plant's water-use strategy, yet, we still only poorly understand how plants vary in the extent to which hydraulic properties and traits such as leaf size, WD and LM/SM are coordinated, and what the implications of this variation may be.  相似文献   

10.

Environmental gradients are known to drive changes in mean trait values, but changes in the trait integration strength across local communities are less well understood, particularly with regard to possible links with species richness variation. Here, we tested if climate, soil, and topography gradients drive species richness indirectly via constraints on trait integration in the Atlantic Forest of South America. We evaluated seven traits (from leaf, wood, seed, and plant size) of 1456 species occurring across 84 local communities. Generalized least square models and a path model were applied to test direct and indirect relationships. Correlations were higher between leaf traits (average r?=?0.28) and lower when other traits were included (average r?=?0.16). In line with this result, species richness was related to a multivariate index of interspecific trait integration (ITI) computed for leaf traits, but not to the ITI for all the seven traits. Abiotic gradients influenced species richness both directly and indirectly through the leaf trait integration. A total of 33% and 26% of the variation in species richness and ITI, respectively, were explained by the models, with climatic conditions showing higher contribution than topographic and edaphic factors. These results support a significant but reduced environmental selection role behind the trait-based community assembly and may suggest that other processes are involved in the constrain of trait integration at larger spatial scales. In addition, different directional trends in trait–trait relationships across local communities suggest that global trait relationships may not necessarily hold at local contexts.

  相似文献   

11.
Specialization is common in most lineages of insect herbivores, one of the most diverse groups of organisms on earth. To address how and why specialization is maintained over evolutionary time, we hypothesized that plant defense and other ecological attributes of potential host plants would predict the performance of a specialist root-feeding herbivore (the red milkweed beetle, Tetraopes tetraophthalmus). Using a comparative phylogenetic and functional trait approach, we assessed the determinants of insect host range across 18 species of Asclepias. Larval survivorship decreased with increasing phylogenetic distance from the true host, Asclepias syriaca, suggesting that adaptation to plant traits drives specialization. Among several root traits measured, only cardenolides (toxic defense chemicals) correlated with larval survival, and cardenolides also explained the phylogenetic distance effect in phylogenetically controlled multiple regression analyses. Additionally, milkweed species having a known association with other Tetraopes beetles were better hosts than species lacking Tetraopes herbivores, and milkweeds with specific leaf area values (a trait related to leaf function and habitat affiliation) similar to those of A. syriaca were better hosts than species having divergent values. We thus conclude that phylogenetic distance is an integrated measure of phenotypic and ecological attributes of Asclepias species, especially defensive cardenolides, which can be used to explain specialization and constraints on host shifts over evolutionary time.  相似文献   

12.
研究草地植物功能性状变异对放牧干扰的响应机制,有助于解析草地生态系统群落构建和功能多样性维持机制及植物对环境的适应及权衡策略。以科尔沁沙地退化草地为对象,研究围封和放牧草地物种多种功能性状(植株高度、根系长度、叶面积、根面积、叶片干物质含量、地上干物质含量、根系干物质含量、比叶面积、比根长和根冠比)变异特征及其对放牧干扰的响应机制。结果表明: 退化草地物种种间性状变异明显高于种内变异,种间性状变异对总体变异的贡献率占比高达70.2%~95.1%,而种内变异仅为4.9%~29.8%,但群落构建中物种的种内变异仍不可忽视。放牧草地物种种间性状变异低于围封草地,且放牧草地种内变异增加而种间变异减小。放牧导致不耐牧的优良禾本科牧草叶面积和叶片干物质含量下降而比根长增加,但耐牧的杂类草则通过增加叶面积和叶片干物质含量并降低比根长来提高在群落中的优势地位。退化草地对放牧响应较为敏感的功能性状有叶面积、叶片干物质含量、比根长和比叶面积。植物叶片性状和根系性状自身及彼此间均呈显著正相关,但放牧会增强根系性状的协同效应而减弱叶片性状的协同效应。说明放牧会驱动植物个体和种群功能性状权衡策略发生改变,进而起到调控植物群落结构和功能的作用。  相似文献   

13.
Stand diversification is considered a promising management approach to increasing the multifunctionality and ecological stability of forests. However, how tree diversity affects higher trophic levels and their role in regulating forest functioning is not well explored particularly for (sub)tropical regions. We analyzed the effects of tree species richness, community composition, and functional diversity on the abundance, species richness, and beta diversity of important functional groups of herbivores and predators in a large-scale forest biodiversity experiment in south-east China. Tree species richness promoted the abundance, but not the species richness, of the dominant, generalist herbivores (especially, adult leaf chewers), probably through diet mixing effects. In contrast, tree richness did not affect the abundance of more specialized herbivores (larval leaf chewers, sap suckers) or predators (web and hunting spiders), and only increased the species richness of larval chewers. Leaf chemical diversity was unrelated to the arthropod data, and leaf morphological diversity only positively affected oligophagous herbivore and hunting spider abundance. However, richness and abundance of all arthropods showed relationships with community-weighted leaf trait means (CWM). The effects of trait diversity and CWMs probably reflect specific nutritional or habitat requirements. This is supported by the strong effects of tree species composition and CWMs on herbivore and spider beta diversity. Although specialized herbivores are generally assumed to determine herbivore effects in species-rich forests, our study suggests that generalist herbivores can be crucial for trophic interactions. Our results indicate that promoting pest control through stand diversification might require a stronger focus on identifying the best-performing tree species mixtures.  相似文献   

14.
Abstract.1. Communities of stem-boring insects attacking the grass Calamagrostis epigeios (L.) Roth were analysed from twenty-five pure stands of C. epigeios differing in area and isolation. Insect communities comprised nine phytophagous and eighteen entomophagous species. Most abundant herbivores (attacking > 1% of all shoots) were Tetramesa eximia (Giraud) (Hym. Eurytomidae), Eurytoma sp. (Hym. Eurytomidae), Lasioptera calamagrostidis (Rübs.) (Dipt. Cecidomyiidae), and Eriopeltis sp. (Hom. Pseudococcidae). About 28% of the twenty-seven species were monophagous, 61% oligophagous (restricted to Poaceae), and 11% polyphagous. Although herbivores generally attacked thick shoots, species-specific differences in the attacked mean diameter were found.2. The main purpose of this study was to analyse the relative effects of area, isolation and unpredictability of available food resources on the abundance of herbivores, parasitoids and resulting tritrophic effects. Variability of shoot abundance varied greatly between years, and even more between habitats within the same year. On average, shoot density per habitat increased or decreased 2.4-fold between succeeding years.3. Variability of grass shoot abundance was not related to habitat characteristics such as area, isolation, biomass, shoot density, changes in area or shoot density between years, or shoot features like internode number or diameter, but was negatively influenced by shading of trees. Similarly, habitat area or isolation did not correlate with other habitat features.4. Grass shoot abundance was the most important predictor of species abundance and attack rate of herbivores. In contrast to expectations, area and isolation of habitats did not explain differences in species richness, and only influenced abundance of three species. In addition, even the experimental removal of all grass shoots (and thereby, of all stem-boring insects) from five habitats in winter did not negatively influence colonization the following year. These results suggest a surprisingly high mobility of this rather specialized community of stem-boring insects that appeared to superimpose on area and isolation effects. Unpredictability of grass shoot abundance was presumably the main selection pressure for the obviously high dispersal abilities of the Calamagrostis insects.5. Per cent parasitism was mainly influenced by the percentage of attacked shoots. Parasitism of T. eximia by its major parasitoid also correlated with habitat connectivity, emphasizing the hypothesis that a continuum of habitats should be particularly favourable for the third trophic level.  相似文献   

15.
Herbivores shape plant communities through selective foraging. However, both herbivore selectivity and the plant’s ability to tolerate or resist herbivory may depend on the density of herbivores. In an alpine ecosystem with a long history of grazing, plants are expected to respond to both enhanced and reduced grazing pressures, and the interaction between plant traits and changes in species abundance are expected to differ between the two types of alteration of grazing regime. To understand the mechanisms behind species response, we investigated the relationship between sheep selectivity (measured in situ), plant traits and experimentally derived measures of change in species abundance as a response to the enhancement (from low to high density) or cessation (from low to zero density) of sheep grazing pressure over a six-year time period for 22 abundant herb species in an alpine habitat in south Norway. Sheep selected large, late-flowering herbs with a low leaf C/N ratio. Species that increased in abundance in response to enhanced grazing pressure were generally small and had high root/shoot ratios, thus exhibiting traits that reflect both resistance (through avoidance) and tolerance (through regrowth capacity) strategies. The abundance of selected species remained stable during the study period, and also under the enhanced grazing pressure treatment. There was, however, a tendency for selected species to respond positively to cessation of grazing, although overall responses to cessation of grazing were much less pronounced than responses to enhanced grazing. Avoidance through short stature (probably associated with increased light availability through the removal of tall competitors) as well as a certain amount of regrowth capacity appear to be the main mechanisms behind a positive response to enhanced grazing pressure in this study. The plant trait perspective clearly improves our insight into the mechanisms behind observed changes in species abundance when the disturbance regime is altered. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Two opposing niche processes have been shown to shape the relationship between ecological traits and species distribution patterns: habitat filtering and competitive exclusion. Habitat filtering is expected to select for similar traits among coexisting species that share similar habitat conditions, whereas competitive exclusion is expected to limit the ecological similarity of coexisting species leading to trait differentiation. Here, we explore how functional traits vary among 19 understory palm species that differ in their distribution across a gradient of soil resource availability in lower montane forest in western Panama. We found evidence that habitat filtering influences species distribution patterns and shifts community-wide and intraspecific trait values. Differences in trait values among sites were more strongly related to soil nutrient availability than to variation in light or rainfall. Soil nutrient availability explained a significant amount of variation in site mean trait values for 4 of 15 functional traits. Site mean values of leaf nitrogen and phosphorus increased 37 and 64%, respectively, leaf carbon:nitrogen decreased 38%, and specific leaf area increased 29% with increasing soil nutrient availability. For Geonoma cuneata, the only species occurring at all sites, leaf phosphorus increased 34% and nitrogen:phosphorus decreased 42% with increasing soil nutrients. In addition to among-site variation, most morphological and leaf nutrient traits differed among coexisting species within sites, suggesting these traits may be important for niche differentiation. Hence, a combination of habitat filtering due to turnover in species composition and intraspecific variation along a soil nutrient gradient and site-specific niche differentiation among co-occurring species influences understory palm community structure in this lower montane forest.  相似文献   

17.
探究功能性状沿着环境梯度如何变化一直以来是基于性状的群落生态学的核心问题之一。尽管功能性状存在种内和种间变异, 但种内变异沿环境梯度如何变化仍有待探究。本文以鼎湖山南亚热带常绿阔叶林1.44 ha塔吊样地内16个树种的2,820个个体为研究对象, 探究4种叶功能性状(比叶面积、叶干物质含量、叶厚度和叶面积)沿群落垂直层次的种内变异。首先, 利用随机效应线性模型量化塔吊样地内的种内变异和种间变异; 其次, 利用Kmeans函数将森林的垂直层次划分为灌木层、亚冠层和林冠层, 并通过构建回归模型探究叶功能性状在群落垂直层次中的种内变异格局。最后, 应用混合线性模型和单因素方差分析的方法探究叶功能性状沿垂直层次的种内变异是否具有物种依赖性。结果表明: 在局域群落中, 并非所有叶功能性状的种内变异都低于种间变异; 叶功能性状在不同垂直层次的种内变异格局存在显著差异, 且种内变异与垂直范围呈正相关; 叶功能性状的种内变异具有较强的物种依赖性, 因此树种差异相对于小环境解释了更多的性状变异; 此外, 不同叶功能性状的种内变异沿垂直层次的变化趋势并不一致。本研究发现种内变异对于物种共存具有重要作用。  相似文献   

18.
Domestic livestock grazing has caused dramatic changes in plant community composition across the globe. However, the response of plant species abundance in communities subject to grazing has not often been investigated through a functional lens, especially for belowground traits. Grazing directly impacts aboveground plant tissues, but the relationships between above‐ and belowground traits, and their influence on species abundance are also not well known. We collected plant trait and species relative abundance data in the grazed and nongrazed meadow plant communities in a species‐rich subalpine ecosystem of the Qinghai–Tibet Plateau. We measured three aboveground traits (leaf photosynthesis rate, specific leaf area, and maximum height) and five belowground traits (root average diameter, root biomass, specific root length, root tissue density, and specific root area). We tested for shifts in the relationship between species relative abundance and among all measured traits under grazing compared with the nongrazed meadow. We also compared the power of above‐ and belowground traits to predict species relative abundance. We observed a significant shift from a resource conservation strategy to a resource acquisition strategy. Moreover, this resource conservation versus resource acquisition trade‐off can also determine species relative abundance in the grazed and nongrazed plant communities. Specifically, abundant species in the nongrazed meadow had aboveground and belowground traits that are associated with high resource conservation, whereas aboveground and belowground traits that are correlated with high resource acquisition determined species relative abundance in the grazed meadow. However, belowground traits were found to explain more variances in species relative abundance than aboveground traits in the nongrazed meadow, while aboveground and belowground traits had comparable predictive power in the grazed meadow. We show that species relative abundance in both the grazed and the nongrazed meadows can be predicted by both aboveground traits and belowground traits associated with a resource acquisition versus conservation trade‐off. More importantly, we show that belowground traits have higher predictive power of species relative abundance than aboveground traits in the nongrazed meadow, whereas in the grazed meadows, above‐ and belowground traits had comparable high predictive power.  相似文献   

19.
《植物生态学报》2017,41(10):1033
Aims Plant-herbivore interaction is a hot topic in the study of biodiversity and ecosystem functions. Herbivores can negatively affect seedling growth and therefore can alter the dynamics of plant recruitment. However, previous studies do not fully reveal the relative importance of different plant functional traits on herbivory intensity and rarely link herbivory to the relative abundance of plant species.Methods Here, we measured 11 plant functional traits and the relative abundance of seedlings of 16 common woody species in the subtropical forests on 29 islands in Thousand Island Lake, East China. We then used multivariate regression and variance partitioning to test the contribution of functional traits and the relative abundance to interspecific differences of insect herbivory intensity.Important findings Our study found that both plant functional traits (e.g. carbon nitrogen ratio, leaf thickness) and the relative abundance of woody species played important roles in herbivory intensity, and they jointly contributed 54% of the variance of the interspecific differences. Among these factors, species with higher defensive ability, lower nutrient content and higher relative abundance had lower herbivory intensity. We suggest to consider both individual level traits (functional traits) and community level attributes (the relative abundance) in future herbivory studies.  相似文献   

20.
Liu X  Swenson NG  Wright SJ  Zhang L  Song K  Du Y  Zhang J  Mi X  Ren H  Ma K 《PloS one》2012,7(4):e34767
The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20 × 20 m) using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号