首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A 75-unit long oligoribonucleotide corresponding to the sequence of the Saccharomyces cerevisiae initiator tRNA was synthesized chemically. The crude RNA was purified, and the sequence was verified by RNA sequencing techniques. A particularly useful purification step involved hydrophobic chromatography on BND-cellulose. The purified RNA could be aminoacylated to 28% of a bona fide initiator tRNA(Met) sample and threonylated to 76% of the level observed with native tRNA(fMet) from E. coli.  相似文献   

2.
To investigate the contribution of the discriminator base of archaeal tRNA(Thr) in aminoacylation by threonyl-tRNA synthetase (ThrRS), cross-species aminoacylation between Escherichia coli and Haloferax volcanii, halophilic archaea, was studied. It was found that E. coli ThrRS threonylated the H. volcanii tRNA(Thr) but that E. coli threonine tRNA was not aminoacylated by H. volcanii ThrRS. Results of a threonylation experiment using in vitro mutants of E. coli threonine tRNA showed that only the mutant tRNA(Thr) having U73 was threonylated by H. volcanii ThrRS. These findings indicate that the discriminator base U73 of H. volcanii tRNA(Thr) is a strong determinant for the recognition by ThrRS.  相似文献   

3.
The primary nucleotide sequence of an Escherichia coli tRNA precursor molecule has been determined. This precursor RNA, specified by the transducing phage lambdah80dglyTsuA36 thrT tyrT, accumulates in a mutant strain temperature-sensitive for RNase P activity. The 170-nucleotide precursor RNA is processed by E. coli extracts to form mature tRNA Gly 2 suA36 and tRNA Thr ACU/C. The sequence of the precursor is pG-U-U-C-C-A-G-G-A-U-G-C-G-G-G-C-A-U-C-G-U-A-U-A-A-U-G-G-C-U-A-U-U-A-C-C-U-C-A-G-C-C-U-N-C-U-A-A-G-C-U-G-A-U-G-A-U-G-C-G-G-G-T-psi-C-G-A-U-U-C-C-C-G-C-U-G-C-C-C-G-C-U-C-C-A-A-G-A-U-G-U-G-C-U-G-A-U-A-U-A-G-C-U-C-A-G-D-D-G-G-D-A-G-A-G-C-G-C-A-C-C-C-U-U-G-G-U-mt6A-A-G-G-G-U-G-A-G-m7G-U-C-G-G-C-A-G-T-psi-C-G-A-A-U-C-U-G-C-C-U-A-U-C-A-G-C-A-C-C-A-C-U-UOH(tRNA sequences are italicized). It contains the entire primary nucleotide sequences of tRNA Gly2 suA36 and tRNA Thr ACU/C, including the common 3'-terminal sequence, CCA. Nineteen additional nucleotides are present, with 10 at the 5' end, 3 at the 3' end, and the remaining 6 in the inter-tRNA spacer region. RNase P cleaves the precursor specifically at the 5' ends of the mature tRNA sequences.  相似文献   

4.
E. coli tRNAMetf was hydrolyzed with RNase A using a limited amount of the enzyme to give two half molecules lacking the anticodon trimer and 3'-terminal dimer. Chemically synthesized trimers CUAp and UUAp were joined to the 5'-half molecules by phosphorylation with polynucleotide kinase plus ATP followed by treatment with RNA ligase. These modified tRNAMetf species had anticodons complementary to the termination codons UAG and UAA. Two half fragments were joined by a similar procedure to yield a molecule lacking the anticodon trimer and the 3'-dimer. Methionine acceptor activity of these tRNA was tested under conditions in which the CAU inserted control tRNAMetf accepted methionine. It was found that all three modified molecules were not recognized by the methionyl-tRNA synthetase from E.coli. The other sixteen amino acids were not incorporated with partially purified aminoacyl-tRNA synthetases.  相似文献   

5.
6.
The secondary structure of 16 S and 23 s rRNA sequences in 30 S preribosomal RNA of Escherichia coli was analyzed by electron microscopy after partial denaturation and compared to mature 16 S and 23 S rRNA examined under the same conditions. The sequences in the pre-rRNA notably lack the specific loops that dominate the 5'-terminal regions of mature 16 S and 23 S rRNA. In other respects, the sizes and locations of loops in the 23 S rRNA sequence are qualitatively very similar in mature and pre-rRNA. Eleven of 12 loops outside of the 5'-terminal domain correspond, with the most frequent features in the 3'-half of the molecule. In contrast, the sizes and locations of loops in the 16 S rRNA sequence differ between precursor and mature forms. In the pre-rRNA, instead of the 370-nucleotide 5'-terminal loop of mature rRNA, some 1000-nucleotide terminal loops are observed. The pre-rRNA also shows a frequent 610-nucleotide central loop and a large 1240-nucleotide loop not seen in the mature rRNA. Also, in the 3'-region of the sequence, the largest loops in pre-rRNA are 120 nucleotides shorter than in mature rRNA. We suggest that the structure of pre-rRNA may promote some alternate conformational features, and that these could be important during ribosome formation or function.  相似文献   

7.
J C Liu  M Liu    J Horowitz 《RNA (New York, N.Y.)》1998,4(6):639-646
Escherichia coli tRNA(Val) with pyrimidine substitutions for the universally conserved 3'-terminal adenine can be readily aminoacylated. It cannot, however, transfer valine into polypeptides. Conversely, despite being a poor substrate for valyl-tRNA synthetase, tRNA(Val) with a 3'-terminal guanine is active in in vitro polypeptide synthesis. To better understand the function of the 3'-CCA sequence of tRNA in protein synthesis, the effects of systematically varying all three bases on formation of the Val-tRNA(Val):EF-Tu:GTP ternary complex were investigated. Substitutions at C74 and C75 have no significant effect, but replacing A76 with pyrimidines decreases the affinity of valyl-tRNA(Val) for EF-Tu:GTP, thus explaining the inability of these tRNA(Val) variants to function in polypeptide synthesis. Valyl-tRNA(Val) terminating in 3'-guanine is readily recognized by EF-TU:GTP. Dissociation constants of the EF-Tu:GTP ternary complexes with valine tRNAs having nucleotide substitutions at the 3' end increase in the order adenine < guanine < uracil; EF-Tu has very little affinity for tRNA terminating in 3' cytosine. Similar observations were made in studies of the interaction of 3' end mutants of E. coli tRNA(Ala) and tRNA(Phe) with EF-Tu:GTP. These results indicate that EF-Tu:GTP preferentially recognizes purines and discriminates against pyrimidines, especially cytosine, at the 3' end of aminoacyl-tRNAs.  相似文献   

8.
Transformation of 4-thiouridine residues in Escherichia coli transfer ribonucleic acids is achieved under conditions which leave the major bases and the primary structure unaffected. The modifications of 4-thiouridine involve either alteration with N-ethylmaleimide, cyanogen bromide, or hydrogen peroxide, or a photochemical transformation effected by irradiation at 330 nm of tRNA in an organic solvent. These selective modifications were made on unfractionated species (Phe, Leu, fMet, Tyr, and Val) and purified species (Phe, fMet, and Val) of E. coli tRNA with little or no loss in their capacities to be aminoacylated. Of the tRNA species tested, subsequent treatment of 4-thiouridineless-tRNA with sodium borohydride affects only the capacity of tRNAPhe to be aminoacylated. These observations are consistent with the proposal that the cognate ligase recognition site on tRNAPhe is situated in the nonhydrogenbonded dihydrouridine loop area of the molecule.  相似文献   

9.
The conformation of single-stranded nucleic acids tDNA versus tRNA   总被引:2,自引:0,他引:2  
Conformational analyses using the single-strand-specific nuclease from mung bean and restriction endonucleases have been performed on a series of DNA fragments related to the sequence of the yeast initiator tRNA(Met). Mung bean nuclease cleaves DNA fragments exclusively in some, but not all, single-stranded regions as predicted by RNA secondary structural rules. Comparison of cleavage patterns of yeast initiator tRNA(Met), tDNA(Met) (a DNA oligomer having the sequence of tRNA(Met] and the anti-tDNA(Met) (the complement of tDNA(Met] suggests that the conformation of the three molecules is very similar. Furthermore, both tDNA and anti-tDNA are cleaved by HhaI and CfoI restriction endonucleases at two GCG/C sites which would be in double-stranded regions (the acceptor and dihydrouridine stem), if the two molecules adopt the tRNA cloverleaf structure. On the other hand, minor cleavage products show that the core region, i.e. the extra loop area, is slightly more exposed in tDNA and in anti-tDNA than in tRNA. Therefore, we submit that the global conformation of nucleic acids is primarily dictated by the interaction of purine and pyrimidine bases with atoms and functional groups common to both RNA and DNA. In this view the 2'-hydroxyl group, in tRNA at least, is an auxiliary structural feature whose role is limited to fostering local interactions, which increase the stability of a given conformation.  相似文献   

10.
Two procedures were investigated for the modification of tRNAs at the 3'-terminal nucleoside. The first involved the incubation of an enzymatically abreviated tRNA (tRNA-C-COH) with appropriate nucleoside triphosphates in the presence of CTP(ATP):tRNA nucleotidyltransferase from Escherichia coli and yeast. The E. coli enzyme did not utilize 2'- or 3'-deoxyadenosine 5'-triphosphate as substrates, but affected incorporation of the 2'- and 3'-O-methyladenosine triphosphates onto tRNA-C-Cou to the extent of 30 and 37%, respectively. Although incorporation of the deoxynucleotides could not be effected using the E. coli enzyme, yeast CTP(ATP:tRNA nucleotidyltransferase produced the desired tRNAs in yields of 45-65%. The second modification procedure involved incubation of tRNA-C-COH with (appropriately blocked) nucleoside diphosphates in the presence of polynucleotide phosphorylase. This procedure afforded the tRNAs terminating in 2'- and 3'-deoxyadenosine in yields of 4% (and the yield of the former was increased to 36% when the incubation was carried out in the presence of 20% methanol). The yields of tRNAs terminating in 2'- and 3'-O-methyladenosing produced by this procedure were 55 and 17%, respectively. Because only single isomers of most of the tRNAs terminating in 2'- and 3'-deoxy- and O-methyladenosine are aminoacylated, attempts were made to obtain the other isomericaminoacyl-tRNA by enzymatic introduction of chemically preaminoacylated nucleotides onto tRNA-C-COH. Although incubation of tRNA-C-COH with three aminoacylated nucleoside 5'-triphosphates and E. coli CTP(ATP):tRNA nucleotidyltransferase did not result in production of the desired tRNAs to a detectable extent, incubation with 2'-deoxy-3'-O-L-phenylalanyladenosine 5'-diphosphate and polynucleotide phosphorylase afforded E. coli tRNA terminating with the corresponding aminoacylated deoxynucleoside.  相似文献   

11.
This paper focuses on several aspects of the specificity of mutants of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) and tRNA(Gln). Temperature-sensitive mutants located in glnS, the gene for GlnRS, have been described previously. The mutations responsible for the temperature-sensitive phenotype were analyzed, and pseudorevertants of these mutants isolated and characterized. The nature of these mutations is discussed in terms of their location in the three-dimensional structure of the tRNA(Gln).GlnRS complex. In order to characterize the specificity of the aminoacylation reaction, mutant tRNA(Gln) species were synthesized with either a 2'-deoxy AMP or 3'-deoxy AMP as their 3'-terminal nucleotide. Subsequent assays for aminoacylation and ATP/PPi exchange activity established the esterification of glutamine to the 2'-hydroxyl of the terminal adenosine; there is no glutaminylation of the 3'-OH group. This correlates with the classification of GlnRS as a class I aminoacyl-tRNA synthetase. Mutations in tRNA(Gln) are discussed which affect the recognition of GlnRS and the current concept of glutamine identity in E coli is reviewed.  相似文献   

12.
13.
H Uemura  M Imai  E Ohtsuka  M Ikehara    D Sll 《Nucleic acids research》1982,10(20):6531-6539
The effect of base changes at the fourth position from the 3'-terminus of Escherichia coli initiator tRNAMet has been studied to test the 'discriminator hypothesis' which proposed that the nucleotide in this position might have a role in the specificity of the aminoacylation reaction. E. coli initiator tRNA lacking the 3'-terminal tetranucleotide was prepared by partial digestion with S1 nuclease. To construct tRNA analogs with different bases in the fourth position this truncated tRNA was joined by RNA ligase to each of four chemically synthesized 2',3'-ethoxy-methylidene tetranucleotides pACCA(em), pCCCA(em), pGCCA(em), and pUCCA(em). In vitro aminoacylation studies showed that all four molecules accepted methionine, albeit with different Vmax values.  相似文献   

14.
In Escherichia coli, the free amino group of the aminoacyl moiety of methionyl-tRNA(fMet) is specifically modified by a transformylation reaction. To identify the nucleotides governing the recognition of the tRNA substrate by the formylase, initiator tRNA(fMet) was changed into an elongator tRNA with the help of an in vivo selection method. All the mutations isolated were in the tRNA acceptor arm, at positions 72 and 73. The major role of the acceptor arm was further established by the demonstration of the full formylability of a chimaeric tRNA(Met) containing the acceptor stem of tRNA(fMet) and the remaining of the structure of tRNA(mMet). In addition, more than 30 variants of the genes encoding tRNA(mMet) or tRNA(fMet) have been constructed, the corresponding mutant tRNA products purified and the parameters of the formylation reaction measured. tRNA(mMet) became formylatable by the only change of the G1.C72 base-pair into C1-A72. It was possible to render tRNA(mMet) as good a substrate as tRNA(fMet) for the formylase by the introduction of a limited number of additional changes in the acceptor stem. In conclusion, A73, G2.C71, C3.G70 and G4.C69 are positive determinants for the specific processing of methionyl-tRNA(fMet) by the formylase while the occurrence of a G.C or C.G base-pair between positions 1 and 72 acts as a major negative determinant. This pattern appears to account fully for the specificity of the formylase and the lack of formylation of any aminoacylated tRNA, excepting the methionyl-tRNA(fMet).  相似文献   

15.
We showed recently that a mutant of Escherichia coli initiator tRNA with a CAU-->CUA anticodon sequence change can initiate protein synthesis from UAG by using formylglutamine instead of formylmethionine. We further showed that coupling of the anticodon sequence change to mutations in the acceptor stem that reduced Vmax/Km(app) in formylation of the tRNAs in vitro significantly reduced their activity in initiation in vivo. In this work, we have screened an E. coli genomic DNA library in a multicopy vector carrying one of the mutant tRNA genes and have found that the gene for E. coli methionyl-tRNA synthetase (MetRS) rescues, partially, the initiation defect of the mutant tRNA. For other mutant tRNAs, we have examined the effect of overproduction of MetRS on their activities in initiation and their aminoacylation and formylation in vivo. Some but not all of the tRNA mutants can be rescued. Those that cannot be rescued are extremely poor substrates for MetRS or the formylating enzyme. Overproduction of MetRS also significantly increases the initiation activity of a tRNA mutant which can otherwise be aminoacylated with glutamine and fully formylated in vivo. We interpret these results as follows. (i) Mutant initiator tRNAs that are poor substrates for MetRS are aminoacylated in part with methionine when MetRS is overproduced. (ii) Mutant tRNAs aminoacylated with methionine are better substrates for the formylating enzyme in vivo than mutant tRNAs aminoacylated with glutamine. (iii) Mutant tRNAs carrying formylmethionine are significantly more active in initiation than those carrying formylglutamine. Consequently, a subset of mutant tRNAs which are defective in formylation and therefore inactive in initiation when they are aminoacylated with glutamine become partially active when MetRS is overproduced.  相似文献   

16.
17.
Madore E  Lipman RS  Hou YM  Lapointe J 《Biochemistry》2000,39(23):6791-6798
The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.  相似文献   

18.
1. The sites within the tRNA sequence of nucleosides methylated by the action of enzymes from mouse colon, rat kidney and tumours of these tissues acting on tRNA(Asp) from yeast and on tRNA(Glu) (2), tRNA(fMet) and tRNA(Val) (1) from Escherichia coli were determined. 2. The same sites in a particular tRNA were methylated by all of these extracts. Thus tRNA(Glu) (2) was methylated at the cytidine residue at position 48 and the adenosine residue at position 58 from the 5'-end of the molecule; tRNA(Asp) was methylated at the guanosine residue at position 26 from the 5'-end of the molecule; tRNA(fMet) was methylated at the guanosine residues 9 and 27, the cytidine residue 49 and the adenosine residue 59 from the 5'-end; tRNA(Val) (1) was methylated at the guanosine residue 10, the cytidine residue 48 and the adenosine residue 58 from the 5'-end. 3. All of these sites within the clover leaf structure of the tRNA sequence are occupied by a methylated nucleoside in some tRNA species of known sequence. It is concluded that methylation of tRNA from micro-organisms by enzymes from mammalian tissues in vitro probably does accurately represent the specificity of these enzymes in vivo. However, there was no evidence that the tumour extracts, which had considerably greater tRNA methylase activity than the normal tissues, had methylases with altered specificity capable of methylating sites not methylated in the normal tissues.  相似文献   

19.
Initiation of in vivo protein synthesis with non-methionine amino acids   总被引:8,自引:0,他引:8  
Methionine is the universal amino acid for initiation of protein synthesis in all known organisms. The amino acid is coupled to a specific initiator methionine tRNA by methionyl-tRNA synthetase. In Escherichia coli, attachment of methionine to the initiator tRNA (tRNA(fMet)) has been shown to be dependent on synthetase recognition of the methionine anticodon CAU (complementary to the initiation codon AUG), [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759]. We show here that alteration of the anticodon of tRNA(fMet) to GAC or GAA leads to aminoacylation of the initiator tRNA with valine or phenylalanine. In addition, tRNA(fMet) carrying these amino acids initiates in vivo protein synthesis when provided with initiation codons complementary to the modified anticodons. These results indicate that the sequence of the anticodon of tRNA(fMet) dictates the identity of the amino acid attached to the initiator tRNA in vivo and that there are no subsequent steps which prevent initiation of E. coli protein synthesis by valine and phenylalanine. The methods described here also provide a convenient in vivo assay for further examination of the role of the anticodon in tRNA amino acid acceptor identity.  相似文献   

20.
Recognition sites of tRNA by tRNA(guanosine-2'-)-methyltransferase (Gm-methylase) [EC 2.1.1.34] from an extreme thermophile, Thermus thermophilus HB27, were studied by two independent methods--fragment reactions and footprinting analyses, using yeast tRNA(Phe) and Escherichia coli tRNA(fMet) as substrates. None of the tRNA-derived oligonucleotides which have the G-G sequence but are not long enough to form the "stem-loop" structure could be methylated by Gm-methylase. The 5'-half fragments having the intact D-"stem-loop" structure served as substrates for Gm-methylase, with a similar Vmax but 6-8 times larger Km, as compared with the intact tRNAs. The results of footprinting analyses were consistent with the foregoing findings. Gm-methylase protected only the D-loop region of tRNA from RNase T1 attack, but other parts of tRNA extending from the amino acid stem to the T arm became more sensitive to RNase T1, suggesting a considerable change of tRNA tertiary structure due to complex formation with Gm-methylase. These results indicate that a D-"stem-loop" structure is a prerequisite for recognition by Gm-methylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号